Energy-efficient computation offloading and resource allocation for delay-sensitive mobile edge computing

2019 ◽  
Vol 21 ◽  
pp. 154-164 ◽  
Author(s):  
Quyuan Wang ◽  
Songtao Guo ◽  
Jiadi Liu ◽  
Yuanyuan Yang
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1010 ◽  
Author(s):  
Prince Waqas Khan ◽  
Khizar Abbas ◽  
Hadil Shaiba ◽  
Ammar Muthanna ◽  
Abdelrahman Abuarqoub ◽  
...  

Conserving energy resources and enhancing computation capability have been the key design challenges in the era of the Internet of Things (IoT). The recent development of energy harvesting (EH) and Mobile Edge Computing (MEC) technologies have been recognized as promising techniques for tackling such challenges. Computation offloading enables executing the heavy computation workloads at the powerful MEC servers. Hence, the quality of computation experience, for example, the execution latency, could be significantly improved. In a situation where mobile devices can move arbitrarily and having multi servers for offloading, computation offloading strategies are facing new challenges. The competition of resource allocation and server selection becomes high in such environments. In this paper, an optimized computation offloading algorithm that is based on integer linear optimization is proposed. The algorithm allows choosing the execution mode among local execution, offloading execution, and task dropping for each mobile device. The proposed system is based on an improved computing strategy that is also energy efficient. Mobile devices, including energy harvesting (EH) devices, are considered for simulation purposes. Simulation results illustrate that the energy level starts from 0.979 % and gradually decreases to 0.87 % . Therefore, the proposed algorithm can trade-off the energy of computational offloading tasks efficiently.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 204
Author(s):  
Juan Fang ◽  
Jiamei Shi ◽  
Shuaibing Lu ◽  
Mengyuan Zhang ◽  
Zhiyuan Ye

With the rapidly development of mobile cloud computing (MCC), the Internet of Things (IoT), and artificial intelligence (AI), user equipment (UEs) are facing explosive growth. In order to effectively solve the problem that UEs may face with insufficient capacity when dealing with computationally intensive and delay sensitive applications, we take Mobile Edge Computing (MEC) of the IoT as the starting point and study the computation offloading strategy of UEs. First, we model the application generated by UEs as a directed acyclic graph (DAG) to achieve fine-grained task offloading scheduling, which makes the parallel processing of tasks possible and speeds up the execution efficiency. Then, we propose a multi-population cooperative elite algorithm (MCE-GA) based on the standard genetic algorithm, which can solve the offloading problem for tasks with dependency in MEC to minimize the execution delay and energy consumption of applications. Experimental results show that MCE-GA has better performance compared to the baseline algorithms. To be specific, the overhead reduction by MCE-GA can be up to 72.4%, 38.6%, and 19.3%, respectively, which proves the effectiveness and reliability of MCE-GA.


2018 ◽  
Vol 66 (6) ◽  
pp. 2603-2616 ◽  
Author(s):  
Xinchen Lyu ◽  
Hui Tian ◽  
Wei Ni ◽  
Yan Zhang ◽  
Ping Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document