Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile Edge Computing

Author(s):  
Huan Zhou ◽  
Kai Jiang ◽  
Xuxun Liu ◽  
Xiuhua Li ◽  
Victor C. M. Leung
Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 856-874
Author(s):  
S. Anoop ◽  
Dr.J. Amar Pratap Singh

Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in the form of applications which creates advancement in day to day life. This technological advancements overcomes the traditional computing methods which increases communication delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is evolving as a scenario for improving in these limitations so as to provide better output to end users. This paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A strategy for computation offloading based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm help to optimize the edge computing offloading model. Experimental results show that our proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently decrease total task delay and energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1010 ◽  
Author(s):  
Prince Waqas Khan ◽  
Khizar Abbas ◽  
Hadil Shaiba ◽  
Ammar Muthanna ◽  
Abdelrahman Abuarqoub ◽  
...  

Conserving energy resources and enhancing computation capability have been the key design challenges in the era of the Internet of Things (IoT). The recent development of energy harvesting (EH) and Mobile Edge Computing (MEC) technologies have been recognized as promising techniques for tackling such challenges. Computation offloading enables executing the heavy computation workloads at the powerful MEC servers. Hence, the quality of computation experience, for example, the execution latency, could be significantly improved. In a situation where mobile devices can move arbitrarily and having multi servers for offloading, computation offloading strategies are facing new challenges. The competition of resource allocation and server selection becomes high in such environments. In this paper, an optimized computation offloading algorithm that is based on integer linear optimization is proposed. The algorithm allows choosing the execution mode among local execution, offloading execution, and task dropping for each mobile device. The proposed system is based on an improved computing strategy that is also energy efficient. Mobile devices, including energy harvesting (EH) devices, are considered for simulation purposes. Simulation results illustrate that the energy level starts from 0.979 % and gradually decreases to 0.87 % . Therefore, the proposed algorithm can trade-off the energy of computational offloading tasks efficiently.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 82867-82875 ◽  
Author(s):  
Israr Khan ◽  
Xiaofeng Tao ◽  
G. M. Shafiqur Rahman ◽  
Waheed Ur Rehman ◽  
Tabinda Salam

Sign in / Sign up

Export Citation Format

Share Document