The stress intensity factors (SIFs) of cracked half-plane specimen in contact with semi-circular object

2015 ◽  
Vol 75 ◽  
pp. 104-112 ◽  
Author(s):  
H. Sanati ◽  
A. Amini ◽  
F. Reshadi ◽  
N. Soltani ◽  
G. Faraji ◽  
...  
1999 ◽  
Author(s):  
Haiying Huang ◽  
George A. Kadomateas ◽  
Valeria La Saponara

Abstract This paper presents a method for determining the dislocation solution in a bi-material half plane and a bi-material infinite strip, which is subsequently used to obtain the mixed-mode stress intensity factors for a corresponding bi-material interface crack. First, the dislocation solution in a bi-material infinite plane is summarized. An array of surface dislocations is then distributed along the free boundary of the half plane and the infinite strip. The dislocation densities of the aforementioned surface dislocations are determined by satisfying the traction-free boundary conditions. After the dislocation solution in the finite domain is achieved, the mixed-mode stress intensity factors for interface cracks are calculated based on the continuous dislocation technique. Results are compared with analytical solution for homogeneous anisotropic media.


2002 ◽  
Vol 69 (5) ◽  
pp. 580-588 ◽  
Author(s):  
S. Dag ◽  
F. Erdogan

In this study the problem of a surface crack in a semi-infinite elastic graded medium under general loading conditions is considered. It is assumed that first by solving the problem in the absence of a crack it is reduced to a local perturbation problem with arbitrary self-equilibrating crack surface tractions. The local problem is then solved by approximating the normal and shear tractions on the crack surfaces by polynomials and the normalized modes I and II stress intensity factors are given. As an example the results for a graded half-plane loaded by a sliding rigid circular stamp are presented.


2018 ◽  
Vol 774 ◽  
pp. 179-184 ◽  
Author(s):  
K.B. Yilmaz ◽  
Mehmet Ali Güler ◽  
Boray Yildirim

In this study, the crack problem for a homogeneous orthotropic medium loaded by a sliding rigid flat punch is considered. The homogeneous orthotropic medium is assumed to be a half-plane and is subjected to both normal and tangential forces through the sliding action of the punch. The crack on the homogeneous orthotropic medium is supposed to a depth of and is parallel to the direction of the normal force. The effect of the geometrical parameters and coefficient of friction on the mixed-mode stress intensity factors (mode I and mode II) is investigated using a computational approach using the finite element method. Augmented Lagrange method is used for the contact algorithm between the rigid flat punch and homogeneous orthotropic half-plane. This study may provide insight to the engineers in understanding the crack mechanisms in orthotropic materials in a comprehensive way and to identify early crack propagations under frictional loadings accurately.


2007 ◽  
Vol 353-358 ◽  
pp. 1125-1128
Author(s):  
He Hui Wang ◽  
Meng Xi Hu ◽  
Yi Fan Chen ◽  
Dong Liang Wang ◽  
Ke Di Xie

Modes I and II stress intensity factors are analyzed by means of a variational boundary integral method (VBIM) for slant surface-breaking cracks in a half-plane with surface steps subject to contact loadings. This method represents the crack as a continuous distribution of dislocation loops. The crack opening displacements, which are related to the geometry of loops and their Burgers vectors, can be determined by minimizing the elastic potential energy, obtained from the known expressions of the interaction energy of a pair of dislocation loops, of the solid. In contrast to other methods, this approach finally reduces to a symmetric system of equations with milder singularities of the type 1/R, which facilitate the numerical treatments. By modeling the surface boundary of the half-plane as half part of an infinite crack breaking through an infinite solid, this paper demonstrates that the VBIM can be well extended to solve the fracture problems of inclined surface-breaking cracks in a half-plane with curve or step notches subject to combined contact loadings, and presents results of stress intensity factors for a variety of loadings, cracks and step surface configurations. Numerical results of test examples are in good agreement with the existing results in the literature.


Sign in / Sign up

Export Citation Format

Share Document