Reproducing absorption spectra of pH indicators from RGB values of microscopic images

Talanta ◽  
2020 ◽  
Vol 216 ◽  
pp. 120952 ◽  
Author(s):  
Arinori Inagawa ◽  
Asuka Sasaki ◽  
Nobuo Uehara
Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105998
Author(s):  
Arinori Inagawa ◽  
Kana Saito ◽  
Asuka Sasaki ◽  
Nobuo Uehara

1979 ◽  
Vol 25 (1) ◽  
pp. 143-146 ◽  
Author(s):  
G Hoxter

Abstract I recommend the use of isosbestic points for conveniently checking the wavelength scale of spectrophotometers in the ultraviolet and visible regions. Colorimetric pH indicators, hemoglobin derivatives, and other radiation-absorbing substances that are convertible into stable isomers of different absorption spectra provide a means for calibrating many different wavelengths by comparing the absorptivities of these isomers in equimolar solutions. The method requires no special precautions and results are independent of substance concentration and temperature between 4 and 45 degrees C. Isosbestic calibration may be important for (e.g.) coenzyme-dependent dehydrogenase activity determinations and in quality assurance programs.


2014 ◽  
Vol 102 ◽  
pp. 241-250 ◽  
Author(s):  
Thierry De Meyer ◽  
Karen Hemelsoet ◽  
Veronique Van Speybroeck ◽  
Karen De Clerck

1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times > 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


Author(s):  
R. Y. Tsien ◽  
A. Minta ◽  
M. Poenie ◽  
J.P.Y. Kao ◽  
A. Harootunian

Recent technical advances now enable the continuous imaging of important ionic signals inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+, or Mg2+. The Ca2+ indicators, exemplified by fura-2 and indo-1, derive their high affinity (Kd near 200 nM) and selectivity for Ca2+ to a versatile tetracarboxylate binding site3 modeled on and isosteric with the well known chelator EGTA. The most commonly used pH indicators are fluorescein dyes (such as BCECF) modified to adjust their pKa's and improve their retention inside cells. Na+ indicators are crown ethers with cavity sizes chosen to select Na+ over K+: Mg2+ indicators use tricarboxylate binding sites truncated from those of the Ca2+ chelators, resulting in a more compact arrangement of carboxylates to suit the smaller ion.


1996 ◽  
Vol 88 (1) ◽  
pp. 281-290 ◽  
Author(s):  
HAO WEN ◽  
TIANJING HE ◽  
CUNYI XU ◽  
JIAN ZUO ◽  
FAN-CHEN LIU

Sign in / Sign up

Export Citation Format

Share Document