neutral species
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 28)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Andre Calado Coroado ◽  
Paolo Ricci

Abstract A self-consistent model is presented for the simulation of a multi-component plasma in the tokamak boundary. A deuterium plasma is considered, with the plasma species that include electrons, deuterium atomic ions and deuterium molecular ions, while the deuterium atoms and molecules constitute the neutral species. The plasma and neutral models are coupled via a number of collisional interactions, which include dissociation, ionization, charge-exchange and recombination processes. The derivation of the three-fluid drift-reduced Braginskii equations used to describe the turbulent plasma dynamics is presented, including its boundary conditions. The kinetic advection equations for the neutral species are also derived, and their numerical implementation discussed. The first results of multi-component plasma simulations carried out by using the GBS code are then presented and analyzed, being compared with results obtained with the single-component plasma model.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012078
Author(s):  
A Paolone ◽  
S Brutti

Abstract In this paper we investigated the calculation of the anodic limit of two anions of ionic liquids, largely used as electrolyte of lithium batteries. Starting from a model based on calculations performed on single ions at the MP2 level of theory, we showed that the matching between calculation and experiments decreases while using more expanded basis set with respect to 6-31G**, possibly because of the destabilization of the neutral species when larger basis sets are considered. Additionally, in order to decrease the computational time, the performances for the calculation of the anodic limit obtained by means of a series of DFT functionals with increasing level of complexity (from the Generalized Gradient Approximation to the Range Separated Hybrid meta-Generalized Gradient Approximation) were compared. Overall, the best performing functionals are BMK, ωB97M-V and MN12-SX, while acceptable results can be obtained by M06-2X, M11, M08-HX and M11-L. Some less computationally expensive functionals, like CAM-B3LYP and ωB97X-D, also provide reasonable values of the anodic limit.


Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 68
Author(s):  
Mohammed Altahan ◽  
Michael Beckett ◽  
Simon Coles ◽  
Peter Horton

Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1068
Author(s):  
Ganesh L. Ghurye ◽  
Dhananjay Mishra ◽  
Luke Lucas

To understand partitioning of produced water (PW) constituents using thermal desalination, PW from the Delaware Basin was desalinated using a crystallization process and modeled using OLI Systems, Inc. (OLI, Parsippany, NJ, USA) chemistry software. The incorporation of a pretreatment step, steam stripping, prior to desalination was predicted to be effective at removing hydrocarbons (across a range of volatilities). As expected, inorganics were almost completely retained in the residual brine which was confirmed by OLI. As evaporation progressed, sparingly soluble compounds such as gypsum and celestite precipitated first and overall solids production at this stage was low (<1% of total solids). Further evaporation resulted in saturation of the residual brine with respect to NaCl, which started to precipitate in bulk up to a practical desalination limit of approximately 68% by mass (approximately 80% by volume). Beyond this point, the residual brine and solids mixture became too viscous to be pumped. Gravimetrically determined total dissolved solids (TDS) for PW, distillate and residual brine was found to be much higher than prediction, potentially due to the presence of neutral species, unstripped gases and organic (likely hydrophilic) constituents. Although the distillate had low TDS, the presence of unknown constituents including organic compounds in the distillate will likely require polishing treatment to mitigate potential toxicity associated with such compounds or transformation products post-release if discharged to the environment. OLI predicted near-complete retention of acetate in the residual brine. In contrast, laboratory tests showed nearly 50% partitioning of acetate into the distillate. Although not modeled, propionate partitioning was even higher at 94%. The inclusion of ammonia as an input species in OLI greatly improved the match between test data and model prediction. Additionally, it was hypothesized that acetic acid/acetate could have formed a volatile adduct with ammonia that increased its volatility and partitioning into the distillate. The findings of this study inform beneficial use by describing the chemical composition of desalination-derived distillate, brine and salt products. This study also identified alternative approaches, both treatment and non-treatment, for managing PW from unconventional operations.


2021 ◽  
Author(s):  
Tiddo Jonathan Mooibroek ◽  
Brian Timmer

The hollow [PdL][BArF]2 complex 1 of a tetra-pyridyl (py) ligand (L) has a [Pd(py)4]2+ coordination environment. Addition of coordinating anions resulted in the formation of a neutral species with Pd(py)2(anion)2...


2020 ◽  
pp. 26-29
Author(s):  
I.B. Denysenko ◽  
S. Ivko ◽  
N.A. Azarenkov ◽  
G. Burmaka

It is studied how dissociation and ionization of acetylene molecules in their collisions with argon atoms in excited states Ar* may affect properties of argon-acetylene plasma with growing inside of plasma volume dust particles. The study is carried out using a volume-averaged model. To analyze the effects of Ar* atoms on the electron and ion densities, the effective electron temperature and the densities of radical and nonradical neutral species, the values of ionization and dissociation rates for collisions of acetylene molecules with Ar* atoms are varied in numerical calculations. It is found that the collisions of Ar* atoms with acetylene molecules affect essentially the argon-acetylene dusty plasma.


2020 ◽  
Vol 642 ◽  
pp. L17
Author(s):  
J. Cernicharo ◽  
N. Marcelino ◽  
M. Agúndez ◽  
Y. Endo ◽  
C. Cabezas ◽  
...  

Using the Yebes 40m and IRAM 30m radio telescopes, we detected a series of harmonically related lines with a rotational constant B0 = 4460.590 ± 0.001 MHz and a distortion constant D0 = 0.511 ± 0.005 kHz towards the cold dense core TMC-1. High-level-of-theory ab initio calculations indicate that the best possible candidate is protonated tricarbon monoxide, HC3O+. We have succeeded in producing this species in the laboratory and observed its Ju − Jl = 2–1 and 3–2 rotational transitions. Hence, we report the discovery of HC3O+ in space based on our observations, theoretical calculations, and laboratory experiments. We derive an abundance ratio N(C3O)/N(HC3O+) ∼ 7. The high abundance of the protonated form of C3O is due to the high proton affinity of the neutral species. The chemistry of O-bearing species is modelled, and predictions are compared to the derived abundances from our data for the most prominent O-bearing species in TMC-1.


2020 ◽  
Author(s):  
J. T. Emmert ◽  
D. P. Drob ◽  
J. M. Picone ◽  
D. E. Siskind ◽  
M. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document