The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory

2012 ◽  
Vol 527 ◽  
pp. 99-111 ◽  
Author(s):  
Ruijuan Qu ◽  
Hongxia Liu ◽  
Qi Zhang ◽  
Alison Flamm ◽  
Xi Yang ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550201 ◽  
Author(s):  
Bao Chen ◽  
Santao Qi ◽  
Hongquan Song ◽  
Chuanhui Zhang ◽  
Jiang Shen

In this paper, the structural, elastic, electronic and thermodynamic properties of [Formula: see text] and [Formula: see text] intermetallic compound are investigated using pseudopotential method based on density functional theory (DFT) under pressure. In this work, the calculated lattice constant and bulk modulus are in accordance with experimental values at zero temperature and zero pressure. The bulk modulus [Formula: see text], shear modulus [Formula: see text] and Young’s modulus [Formula: see text] for [Formula: see text] and [Formula: see text] increase with the increasing external pressure. It is noted that [Formula: see text] of investigated compound has the largest [Formula: see text], [Formula: see text] and [Formula: see text]. The results of [Formula: see text] and [Formula: see text] have the same change trend, but [Formula: see text] presents an irregular change for [Formula: see text] and [Formula: see text]. The density of states for [Formula: see text] and [Formula: see text] are investigated at 0, 30 and 50 GPa. In addition, the thermodynamic properties as a function of temperature at different pressure are also studied.


RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31535-31546 ◽  
Author(s):  
M. A. Ali ◽  
S. H. Naqib

The structural, electronic, mechanical and thermodynamic properties of (Ti1−xMox)2AlC (0 ≤ x ≤ 0.20) were explored using density functional theory.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


Sign in / Sign up

Export Citation Format

Share Document