bulk modulus
Recently Published Documents


TOTAL DOCUMENTS

1451
(FIVE YEARS 180)

H-INDEX

68
(FIVE YEARS 5)

2022 ◽  
Vol 64 (2) ◽  
pp. 223
Author(s):  
Ф.С. Хоробрых ◽  
В.Д. Чуркин ◽  
М.Ю. Попов

We study the effect of high hydrostatic pressure on 3D polymerized fullerite C60. We do not observe further structural changes until 150 GPa after a formation of 3D C60 under hydrostatic pressure 28 GPa. It is experimentally shown that the obtained samples consist of different clusters formed by sp3 bonds with a different set of force constants, the values of which vary within 20% and exceed the diamond force constants by the factor of 1.3–1.5. The influence of the exposure of laser radiation on the process of 3D polymerization of C60 under pressure was found. Increasing of the exposure by the factor of 15 leads to a decrease in the bulk modulus of 3D C60 from 610 GPa to 504 GPa.


Author(s):  
NV Borse ◽  
MA Sawant ◽  
SP Chippa

This study aims to address the complexities involved in determining the numerical solution of herringbone grooved journal bearing considering cavitation. A modification is made to the Reynolds’ equation to include the effect of cavitation as given by Elrod's cavitation algorithm. Grid transformation is performed to consider the effect of the inclined grooves. The partial differential equation is discretised using finite-difference method. Then, the solution of the resulting set of equations is determined by the alternating-direction implicit method and the pressure, load capacity and attitude angle are obtained. Time step (Δ t) and Bulk modulus have a significant impact on the convergence of the numerical solution incorporating Elrod's cavitation algorithm. Use of alternating-direction implicit method over point by point method like Gauss–Seidel is essential to obtain convergence. Load capacity of the herringbone grooved journal bearing rises with the rise in eccentricity ratio. As compared to the Reynolds boundary conditions, Elrod's model results into lower attitude angle for herringbone grooved journal bearing. Cavitation distribution for herringbone grooved journal bearing is much lower than that of plain journal bearing. The effect of variation of groove angle on the herringbone grooved journal bearing's load capacity, side leakage and friction parameter is also determined. A detailed discussion on the various complexities such as treatment at groove ridge boundaries; numerical oscillations; choice of time step and bulk modulus; and influence of compressibility in the Couette term in full film region in the numerical analysis of herringbone grooved journal bearing specifically considering cavitation is given in this work. Multiple methods to deal with the aforementioned complexities are examined and appropriate solutions are obtained.


2021 ◽  
Author(s):  
Makky Sandra Jaya ◽  
Ghazali Ahmad Riza ◽  
Ahmad Fuad M. Izzuljad ◽  
Mad Sahad Salbiah

Submitted Abstract Objectives/Scope The prediction of fluid parameter related to hydrocarbon presence using seismic data has often been limited by the performance of probability density function in estimating fluid properties from seismic inversion results. A novel fluid bulk modulus inversion (fBMI) is a pre-stack seismic inversion technique that has been developed to allow a direct estimation of pore fluid bulk modulus (Kf) from seismic data. Real data application in Malay basin showcases that Kf volume can be used to pinpoint areas with high probability of hydrocarbon presence. Methods, Procedures, Process The fluid term AVO reflectivity (Russell et al., 2011) is used as the basis of our formulation and has been extended to allow direct estimation of pore fluid bulk modulus, shearmodulus, porosity parameter and density through standard least-square inversion. The novel formulation is able to relax the dependency of fluid terms on the porosity. To demonstrate this, verifications were made against standard linear AVO approximations. Our observation shows that the young tertiary basins such as the Malay basin the fluid bulk modulus values have a big contrast between hydrocarbon saturated and water bearing reservoirs with a minimum of 60% ratio difference. The inverted fluid bulk modulus volume provides thus a direct assessment of areas with high probability of hydrocarbon saturation. Results, Observations, Conclusions In this paper, the fBMI technique is showcased on a field in the Malay basin. The outcome is demonstrated on a well panel analysis for four wells located across the study area (Figure 1). The inverted fluid bulk modulus extracted along a horizon representing the top of target reservoir is shown in Figure 2b. The blue color indicates high bulk modulus corresponds to water-bearing zone, while the yellow-red color range corresponding to low hydrocarbon-bearing zones. The areas of low fluid bulk modulus values at the north-western region are calibrated to known production zones in that region. fBMI shows areas that delineate high probability of hydrocarbon presence and provides a quantitative measure in terms of fluid parameter directly related to the presence of hydrocarbon saturations. Figure 1: Comparison analysis of water saturation (blue curve) and fluid bulk modulus (red curve) of well log data in the Malay basin. Black strips indicate the coal intervals. Figure 2: a) Inverted acoustic impedance extracted from the top reservoir horizon of a field in the Malay basin. b) The corresponding fluid bulk modulus values from fBMI. Novel/Additive Information The fBMI is a new four parameters linear amplitude-versus-offset inversion technique that provides quantitative fluid parameter directly related to fluid bulk modulus from seismic data. It is utilized as a tool for direct hydrocarbon prospect assessment to differentiate gas, oil, condensate and water.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 3) ◽  
Author(s):  
Zhiqi Guo ◽  
Yuedong Li ◽  
Cai Liu ◽  
Da Zhang ◽  
Anbang Li

Abstract Seismic dispersion and fluid mobility attributes are used to characterize a volcanic gas reservoir in the Songliao Basin of China. A rock physics model is constructed to describe poroelastic behaviors associated with heterogeneous fluids saturation within the volcanic gas reservoirs, where velocity dispersion and attenuation of propagating waves are attributed to the wave-induced fluid flow described by the patchy saturation theory. Modeling results indicate that the frequency-dependent bulk modulus at the seismic frequency is more sensitive to gas saturation than the P-wave velocity dispersion. Accordingly, a new inversion method is developed to compute bulk-modulus-related dispersion attribute DK for improved characterization of volcanic gas reservoirs. Synthetic tests indicate that DK is more sensitive than traditional P-wave dispersion attribute DP to the variations of reservoir properties. The high value of dispersion attribute DK indicates the volcanic gas reservoirs with high porosity and gas saturation. At the same time, fluid mobility attribute FM can discriminate the volcanic gas reservoir as DK. Field data applications illustrate that DK and FM exhibit anomalies to the gas zones in the volcanic gas reservoir on the cross-well section. However, DK is more robust than FM to identify favorable zones on horizontal slices for specific target layers. Overall, rock physical modeling provides insights into the poroelastic behaviors of volcanic gas reservoirs, and inversion for seismic dispersion attribute DK improves hydrocarbon detection in the volcanic gas reservoir.


2021 ◽  
Vol 2021 (12) ◽  
pp. 123201
Author(s):  
E A Jagla

Abstract The yielding transition of amorphous materials is studied with a two-dimensional Hamiltonian model that allows both shear and volume deformations. The model is investigated as a function of the relative value of the bulk modulus B with respect to the shear modulus μ. When the ratio B/μ is small enough, the yielding transition becomes discontinuous, yet reversible. If the system is driven at constant strain rate in the coexistence region, a spatially localized shear band is observed while the rest of the system remains blocked. The crucial role of volume fluctuations in the origin of this behavior is clarified in a mean field version of the model.


2021 ◽  
Vol 2021 (3) ◽  
pp. 55-65
Author(s):  
L. Ovsiannikova ◽  
◽  
N. Rozhenko ◽  

The results of research of isolated TiAlNb clusters are presented. The models of isolated clusters of 27, 59, 65 atoms in size which is fragments of the bcc structure have been constructed. The models stoichiometry imitate α-, γ-, α+γ- and β-phase TiAlNb alloys. The structural, cohesive and electronic properties of these clusters have been investigated within the framework of electronic density functional theory with PBE0 functional with a set of MINI basis functions with application of Gaussian'03 and GAMESS software packages. It was found that upon transition of the cluster structure from the α- to the β-phase, the cohesion energy increases and the crystal lattice period decreases. This corresponds to an increase in the values of the structure strength and density. For the calculation of the bulk modulus were utilized value of changes in energy and volume of cluster, got in research. The bulk modulus of the isolated β-phase TiAlNb cluster is predicted. This bulk modulus near to 142.4 GPa. The result was extended to volumetric structures. The investigation showed that bulk modulus of Ti2AlNb materials near to 163.6 GPa. Comparison of calculation results with experimental values of elastic moduli of materials with similar structure and composition is carried out. The comparison revealed the agreement between the calculated values and the results of experiments. A method is proposed for evaluating the elastic properties of TiAlNb alloys based on the results of first principles calculations. Keywords: cluster, aluminide titanium, bulk modulus, computer material science.


Sign in / Sign up

Export Citation Format

Share Document