Nano-inclusion aided thermal conductivity enhancement in palmitic acid/di-methyl formamide phase change material for latent heat thermal energy storage

2019 ◽  
Vol 678 ◽  
pp. 178309 ◽  
Author(s):  
Amit Kumar Mishra ◽  
B.B. Lahiri ◽  
Vijay Solomon ◽  
John Philip
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5024
Author(s):  
Xiaoling Cui ◽  
Xiaoyun Du ◽  
Yanzhou Cao ◽  
Guochen Sang ◽  
Yangkai Zhang ◽  
...  

Efficient use of solar energy by thermal energy storage composites and utilizing environmentally friendly cementitious materials are important trends for sustainable building composite materials. In this study, a paraffin/low density polyethylene (LDPE) composite shape-stabilized phase change material (SSPCM) was prepared and incorporated into a sulphoaluminate cement (SAC) mortar to prepare thermal energy storage mortar. The thermal and mechanical properties of SSPCM and a SAC-based thermal energy storage material (SCTESM) were investigated. The result of differential scanning calorimeter (DSC) analysis indicates that the latent heat of SCTESM is as high as 99.99 J/g. Thermogravimetric analysis demonstrates that the SCTESM does not show significant decomposition below 145 °C. The volume stability test shows the volume shrinkage percentage of the SCTESM is less than that of pure SAC mortar and far less than that of ordinary Portland cement mortar. The SCTESM has high early strength so that the compressive strength at 1-, 3-, and 7-day curing age is up to that at 28-day curing age of 67.5%, 78.3%, and 86.7%, respectively. Furthermore, a mathematical prediction model of the SCTESM compressive strength was proposed. The investigation of latent heat storage characteristics and the thermoregulating performance reveals that SCTESMs have the excellent capacity of heat storage and thermoregulating.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 76 ◽  
Author(s):  
Bernardo Buonomo ◽  
Anna di Pasqua ◽  
Davide Ercole ◽  
Oronzio Manca

Thermal storage system (TES) with phase change material (PCM) is an important device to store thermal energy. It works as a thermal buffer to reconcile the supply energy with the energy demand. It has a wide application field, especially for solar thermal energy storage. The main drawback is the low value of thermal conductivity of the PCM making the system useless for thermal engineering applications. A way to resolve this problem is to combine the PCM with a highly conductive material like metal foam and/or nanoparticles. In this paper a numerical investigation on the metal foam effects in a latent heat thermal energy storage system, based on a phase change material with nanoparticles (nano-PCM), is accomplished. The modelled TES is a typical 70 L water tank filled with nano-PCM with pipes to transfer thermal energy from a fluid to the nano-PCM. The PCM is a pure paraffin wax and the nanoparticles are in aluminum oxide. The metal foam is made of aluminum with assigned values of porosity. The enthalpy-porosity theory is employed to simulate the phase change of the nano-PCM and the metal foam is modelled as a porous media. Numerical simulations are carried out using the Ansys Fluent code. The results are shown in terms of melting time, temperature at varying of time, and total amount of stored energy.


Sign in / Sign up

Export Citation Format

Share Document