scholarly journals Online scheduling on m uniform machines to minimize total (weighted) completion time

2009 ◽  
Vol 410 (38-40) ◽  
pp. 3875-3881 ◽  
Author(s):  
Ming Liu ◽  
Chengbin Chu ◽  
Yinfeng Xu ◽  
Feifeng Zheng
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xuyang Chu ◽  
Jiping Tao

We consider the classic online scheduling problem on m uniform machines in the online setting where jobs arrive over time. Preemption is not allowed. The objective is to minimize total weighted completion time. An online algorithm based on the directly waiting strategy is proposed. Its competitive performance is proved to be max2smax1−1/2∑si,2smax/1+smax2.5−1/2m by the idea of instance reduction, where sm is the fastest machine speed after being normalized by the slowest machine speed.


2015 ◽  
Vol 32 (04) ◽  
pp. 1550026 ◽  
Author(s):  
Yuan-Yuan Lu ◽  
Fei Teng ◽  
Zhi-Xin Feng

In this study, we consider a scheduling problem with truncated exponential sum-of-logarithm-processing-times based and position-based learning effects on a single machine. We prove that the shortest processing time (SPT) rule is optimal for the makespan minimization problem, the sum of the θth power of job completion times minimization problem, and the total lateness minimization problem, respectively. For the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness minimization problem, we present heuristic algorithms (the worst-case bound of these heuristic algorithms are also given) according to the corresponding single machine scheduling problems without learning considerations. It also shows that the problems of minimizing the total tardiness, the total weighted completion time and the discounted total weighted completion time are polynomially solvable under some agreeable conditions on the problem parameters.


Sign in / Sign up

Export Citation Format

Share Document