scholarly journals Revocable identity-based encryption with bounded decryption key exposure resistance: Lattice-based construction and more

2021 ◽  
Vol 849 ◽  
pp. 64-98
Author(s):  
Atsushi Takayasu ◽  
Yohei Watanabe
Author(s):  
Keita Emura ◽  
Atsushi Takayasu ◽  
Yohei Watanabe

AbstractHierarchical key-insulated identity-based encryption (HKIBE) is identity-based encryption (IBE) that allows users to update their secret keys to achieve (hierarchical) key-exposure resilience, which is an important notion in practice. However, existing HKIBE constructions have limitations in efficiency: sizes of ciphertexts and secret keys depend on the hierarchical depth. In this paper, we first triumph over the barrier by proposing simple but effective design methodologies to construct efficient HKIBE schemes. First, we show a generic construction from any hierarchical IBE (HIBE) scheme that satisfies a special requirement, called MSK evaluatability introduced by Emura et al. (Des. Codes Cryptography 89(7):1535–1574, 2021). It provides several new and efficient instantiations since most pairing-based HIBE schemes satisfy the requirement. It is worth noting that it preserves all parameters’ sizes of the underlying HIBE scheme, and hence we obtain several efficient HKIBE schemes under the k-linear assumption in the standard model. Since MSK evaluatability is dedicated to pairing-based HIBE schemes, the first construction restricts pairing-based instantiations. To realize efficient instantiation from various assumptions, we next propose a generic construction of an HKIBE scheme from any plain HIBE scheme. It is based on Hanaoka et al.’s HKIBE scheme (Asiacrypt 2005), and does not need any special properties. Therefore, we obtain new efficient instantiations from various assumptions other than pairing-oriented ones. Though the sizes of secret keys and ciphertexts are larger than those of the first construction, it is more efficient than Hanaoka et al.’s scheme in the sense of the sizes of master public/secret keys.


2019 ◽  
Vol 63 (4) ◽  
pp. 620-632
Author(s):  
Xuecheng Ma ◽  
Dongdai Lin

Abstract Efficient key revocation in Identity-based Encryption (IBE) has been a both fundamental and critical problem when deploying an IBE system in practice. Boneh and Franklin proposed the first revocable IBE (RIBE) scheme where the size of key updates is linear in the number of users. Then, Boldyreva, Goyal and Kumar proposed the first scalable RIBE by using the tree-based approach where the size of key updates is $O(r\log (N/r))$ and the size of every user’s long-term secret key is $O(\log N)$ with $N$ being the number of users and $r$ the number of revoked users. Recently, Qin et al. presented the notion of server-aided RIBE where the size of every user’s long-term secret key is $O(1),$ and users do not need to communicate with Key Generator Center (KGC) during every key updates. However, users must change their identities once their secret keys are revoked as they cannot decrypt ciphertexts by using their revoked secret keys. To address the above problem, we formalize the notion of RIBE with identity reuse. In our system model, users can obtain a new secret key called the reuse secret key from KGC when their secret keys are revoked. The decryption key can be derived from the reuse secret key and new key updates while it cannot be derived from the revoked secret key and the new key updates. We present a concrete construction that is secure against adaptive-ID chosen plaintext attacks and decryption key exposure attacks under the $\mathsf{ADDH}1$ and $\mathsf{DDH}2$ assumptions in the standard model. Furthermore, we extend it to server-aided RIBE scheme with identity reuse property that is more suitable for lightweight devices.


Author(s):  
Jae Hong SEO ◽  
Tetsutaro KOBAYASHI ◽  
Miyako OHKUBO ◽  
Koutarou SUZUKI

Sign in / Sign up

Export Citation Format

Share Document