key revocation
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Pengkun Li ◽  
Jinshu Su ◽  
Xiaofeng Wang ◽  
Qianqian Xing

The Internet lacking accountability suffers from IP address spoofing, prefix hijacking, and DDoS attacks. Global PKI-based accountable network involves harmful centralized authority abuse and complex certificate management. The inherently accountable network with self-certifying addresses is incompatible with the current Internet and faces the difficulty of revoking and updating keys. This study presents DIIA, a blockchain-based decentralized infrastructure to provide accountability for the current Internet. Specifically, DIIA designs a public-permissioned blockchain called TIPchain to act as a decentralized trust anchor, allowing cryptographic authentication of IP addresses without any global trusted authority. DIIA also proposes the revocable trustworthy IP address bound to the cryptographic key, which supports automatic key renewal and efficient key revocation and eliminates complexity certificate management. We present several security mechanisms based on DIIA to show how DIIA can help to enhance network layer security. We also implement a prototype system and experiment with real-world data. The results demonstrate the feasibility and suitability of our work in practice.


2021 ◽  
Vol 5 (1) ◽  
pp. 77-84
Author(s):  
Maitri Patel ◽  
Rajan Patel

A revolutionary change to public-key cryptography can be considered as an Identity Based Cryptography (IBC) in which identity of the receiver is being used as a public key for encrypting a message and Key Generation Centre (KGC). IBC will generate and distribute the private key to each user to decrypt a message. The thought behind presenting the scheme was to improve and reduce the complexity of certificate and key management, but it also gives rise to key escrow problem, access to encrypted information to unauthorized users. The paper represents Improved Identity-Based Encryption Scheme (IIBES) for Domain Name System (DNS) security which provides confidentiality and authentication through modified identity based encryption and identity based digital signatures. The IIBES comprises key revocation mechanism for non-revoked users and also eliminates key escrow problem. Thus, the IIBES aids to implement the identity-based cryptography more safely in reality and protects DNS against cache poisoning, spoofing attack and masquerade attack. Doi: 10.28991/esj-2021-01259 Full Text: PDF


2019 ◽  
Vol 63 (4) ◽  
pp. 620-632
Author(s):  
Xuecheng Ma ◽  
Dongdai Lin

Abstract Efficient key revocation in Identity-based Encryption (IBE) has been a both fundamental and critical problem when deploying an IBE system in practice. Boneh and Franklin proposed the first revocable IBE (RIBE) scheme where the size of key updates is linear in the number of users. Then, Boldyreva, Goyal and Kumar proposed the first scalable RIBE by using the tree-based approach where the size of key updates is $O(r\log (N/r))$ and the size of every user’s long-term secret key is $O(\log N)$ with $N$ being the number of users and $r$ the number of revoked users. Recently, Qin et al. presented the notion of server-aided RIBE where the size of every user’s long-term secret key is $O(1),$ and users do not need to communicate with Key Generator Center (KGC) during every key updates. However, users must change their identities once their secret keys are revoked as they cannot decrypt ciphertexts by using their revoked secret keys. To address the above problem, we formalize the notion of RIBE with identity reuse. In our system model, users can obtain a new secret key called the reuse secret key from KGC when their secret keys are revoked. The decryption key can be derived from the reuse secret key and new key updates while it cannot be derived from the revoked secret key and the new key updates. We present a concrete construction that is secure against adaptive-ID chosen plaintext attacks and decryption key exposure attacks under the $\mathsf{ADDH}1$ and $\mathsf{DDH}2$ assumptions in the standard model. Furthermore, we extend it to server-aided RIBE scheme with identity reuse property that is more suitable for lightweight devices.


Author(s):  
Benedikt Bock ◽  
Jan-Tobias Matysik ◽  
Konrad-Felix Krentz ◽  
Christoph Meinel

2018 ◽  
Vol 24 (3) ◽  
pp. 903-912 ◽  
Author(s):  
Maryam Zarezadeh ◽  
Hamid Mala
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document