Constrained inverse minimum flow problems under the weighted Hamming distance

Author(s):  
Yong Jiang ◽  
Weifeng Lin ◽  
Longcheng Liu ◽  
Anzhen Peng
Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1025
Author(s):  
Laura Ciupala ◽  
Adrian Deaconu

There are various situations in which real-world problems can be modeled and solved as minimum flow problems. Sometimes, in these situations, minor data changes may occur, leading to corresponding changes of the networks in which the practical problems are modeled as flow problems, such as slight variations in capacity or lower bound. For instance, the capacity or the lower bound of an arc may increase or decrease in time, leaving one with no other choice than finding the new minimum network flow. Given both the various ways in which the networks can be changed and the high frequency of these changes, it is desirable to find as fast a computation method for minimum flow as possible. This paper is focused on the cases that concern increasing and decreasing the capacity or the lower bound of an arc. For these cases, both the minimum flow algorithms and the dynamic minimum flow algorithms that are already known are inefficient. Our incremental algorithms for determining minimum flow in the modified network are more efficient than both the above-mentioned types of algorithms. The proposed method starts from the initial network minimum flow and solves the minimum flow problem in a significantly faster way than recalculating the new network minimum flow starting from scratch.


2019 ◽  
Vol 6 (2) ◽  
pp. 90-94
Author(s):  
Hernandez Piloto Daniel Humberto

In this work a class of functions is studied, which are built with the help of significant bits sequences on the ring ℤ2n. This class is built with use of a function ψ: ℤ2n → ℤ2. In public literature there are works in which ψ is a linear function. Here we will use a non-linear ψ function for this set. It is known that the period of a polynomial F in the ring ℤ2n is equal to T(mod 2)2α, where α∈ , n01- . The polynomials for which it is true that T(F) = T(F mod 2), in other words α = 0, are called marked polynomials. For our class we are going to use a polynomial with a maximum period as the characteristic polyomial. In the present work we show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.


Sign in / Sign up

Export Citation Format

Share Document