composites materials
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 91)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
Nadira Bellili ◽  
Badrina Dairi ◽  
Noura Hammour ◽  
Hocine Djidjelli ◽  
Amar Boukerrou

Matter ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 43-76
Author(s):  
Soyeon Park ◽  
Wan Shou ◽  
Liane Makatura ◽  
Wojciech Matusik ◽  
Kun (Kelvin) Fu

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 87
Author(s):  
Ivan V. Terekhov ◽  
Evgeniy M. Chistyakov

Binders, or tackifiers, have become widespread in the production of new composites materials by liquid composite molding (LCM) techniques due to their ability to stabilize preforms during laying-up and impregnation, as well as to improve fracture toughness of the obtained composites, which is very important in aviation, automotive, ship manufacturing, etc. Furthermore, they can be used in modern methods of automatic laying of dry fibers into preforms, which significantly reduces the labor cost of the manufacturing process. In this article, we review the existing research from the 1960s of the 20th century to the present days in the field of creation and properties of binders used to bond various layers of preforms in the manufacturing of composite materials by LCM methods to summarize and synthesize knowledge on these issues. Different binders based on epoxy, polyester, and a number of other resins compatible with the corresponding polymer matrices are considered in the article. The influence of binders on the preforming process, various properties of obtained preforms, including compaction, stability, and permeability, as well as the main characteristics of composite materials obtained by various LCM methods and the advantages and disadvantages of this technology have been also highlighted.


2021 ◽  
pp. 26-38
Author(s):  
Д.А. Дерусова ◽  
В.П. Вавилов ◽  
В.О. Нехорошев ◽  
В.Ю. Шпильной ◽  
Н.В. Дружинин

Laser doppler vibrometry is being increasingly used in nondestructive testing (NDT) of polymer composites materials (PCM) and investigation of amplitude-frequency characteristics of acoustic transducers in a wide range of frequencies. The use of air-coupled transducers allows non- contact NDT thus expanding inspection potentials and simplifying, in some cases, test procedures, as well as reducing the environmental impact on test results, to compare to traditional techniques of acoustic NDT, which mainly implement contact stimulation of objects to be tested. In this study, the peculiarities of non-contact ultrasonic stimulation in application to NDT are analyzed by using scanning laser vibrometry. The results of NDT of impact damage in PCM are presented by using some types of air-coupled acoustic transducers, namely, magnetostrictive, piezoelectric and gas discharge.


Author(s):  
Md Shamsuddoha ◽  
Gangadhara B. Prusty ◽  
Phyo Thu Maung ◽  
Andrew W. Phillips ◽  
Nigel St John

Abstract Fibre reinforced composites materials offer a pathway to produce passive shape adaptive smart marine propellers, which have improved performance characteristics over traditional metallic alloys. Automated Fibre Placement (AFP) technology can provide a leap forward in Cyber-Physical automated manufacturing, which is essential for the implementation and operation of smart factories in the marine propeller industry towards Industry 4.0 readiness. In this paper, a comprehensive structural health monitoring (SHM) routine was performed on an AFP full-scale composite hydrofoil to gain confidence in its dynamic and structural performances through a number of active and passive sensors. The hydrofoil was subjected to constant amplitude flexural fatigue loading in a purpose-built test rig for 105 cycles. The hydrofoil was embedded with distributed optical fibre sensors (DOFS), traditional electrical strain gauges and linear variable displacement transducers (LVDTs). Both microelectromechanical system (MEMS) and piezoelectric (PZT) accelerometers were used to conduct experimental modal analyses (EMA) to observe changes in the modal response of the hydrofoil at regular intervals throughout the fatigue program. The hydrofoils modal response, as well as the stiffness measured using both displacements and strains, remained unchanged over the fatigue loading regime demonstrating the structural integrity of the hydrofoil. The optical fibre sensors endured the fatigue test cycles showing their robustness under fatigue loads. Furthermore, the sensing systems demonstrated the potential of being utilised as a useful maintenance tool combining their adaptability with automated manufacturing during manufacturing through integration within the hydrofoil, a structural test framework for performance measurement, data acquisition and analytics for visualization, and the prospect of decision making for maintenance requirement during any onset in structural performance.


Author(s):  
Mahadeva Reddy ◽  
Adaveesh B ◽  
Mohankumar T S ◽  
Madeva Nagaral

New composites materials are developed to meet the demand for medical devices, vehicles, protective equipment, sporting goods, etc. In present investigations, the effects of graphite filler particles in the epoxy were studied separately by preparing epoxy with 5 and 10 vol.% of graphite filler particles composites by hand layup technique. Further, the combined effect of graphite filler particles and pineapple leaf fibers (PALF) on the mechanical behaviour of epoxy composites was studied by preparing epoxy with 5 vol.% of graphite -30 vol.% of PALF and epoxy with 10 vol.% of graphite -30 vol.% of PALF composites. Prepared composites were subjected to evaluating various mechanical properties like tensile strength, elongation, and flexural strength as per ASTM standards. By adding graphite filler particles and PALF fibers tensile, and flexural strength were improved with a slight reduction in the percentage elongation. Further, these conventional results were validated by FEM analysis using MSC Patran and Nastran Student Version.


2021 ◽  
Vol 2133 (1) ◽  
pp. 012001
Author(s):  
Baoqiong Guo ◽  
Xiaoan Wei ◽  
Binbin Wang

Abstract In this research, nitrocellulose / magnesium borohydride nanomaterials (NC / Mg(BHx)y) nanoenergetic composite materials are synthesized through sol-gel method and the freeze-drying technology. Among them, nitrocellulose (NC) is used as a gel matrix to load Mg(BHx)y particles. Scanning electron microscopy (SEM) results show that Mg(BHx)y is embedded and uniformly dispersed in the NC matrix. The particle size of the high-energy composite material is about 2 μm. The results of FT-IR showed that the hydrogen storage alloy was successfully loaded around the NC without destroying the cellulose structure. The composite material decomposition reaction (Temperature-Time) curve is obtained through the adiabatic accelerated calorimeter (ES-ARC) test.


Sign in / Sign up

Export Citation Format

Share Document