Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism

2004 ◽  
Vol 385 (1-4) ◽  
pp. 17-43 ◽  
Author(s):  
O Tatar ◽  
J.D.A Piper ◽  
H Gürsoy ◽  
A Heimann ◽  
F Koçbulut
Author(s):  
John P. Craddock ◽  
Perach Nuriel ◽  
Andrew R.C. Kylander-Clark ◽  
Bradley R. Hacker ◽  
John Luczaj ◽  
...  

The onset of the Dead Sea transform has recently been reevaluated by U-Pb age-strain analyses of fault-related calcite taken from several fault strands along its main 500-km-long sector. The results suggest that the relative motion between Africa and Arabia north of the Red Sea was transferred northward to the Dead Sea transform as early as 20 Ma and along a ∼10-km-wide deformation zone that formed the central rift with contemporaneous bounding sinistral motion. The Gishron fault is the western bounding fault with normal and sinistral fault offsets that placed Proterozoic crystalline rocks and a cover of Cambrian sandstones in fault contact with Cretaceous-Eocene carbonates. Fault-related calcite veins are common in the Gishron fault zone, and we report the results of a detailed study of one sample with nine calcite fillings. Low fluid inclusion entrapment temperatures <50 °C, stable isotopes values of −3.3−0‰ (δ13C) and −15 to −13‰ (δ18O), and low rare earth element (REE) concentrations within the nine calcite fault fillings indicate that a local, meteoric fluid fed the Gishron fault zone over ca. 7 Ma at depths of <2 km. Laser ablation U-Pb ages within the thin section range from 20.37 Ma to 12.89 Ma and allow a detailed fault-filling chronology with the oldest calcite filling in the middle, younging outward with shearing between the oldest eight zones, all of which are finally crosscut by a perpendicular (E-W) vein. All nine calcite fillings have unique mechanical twinning strain results (n = 303 grains). Shortening strain magnitudes (−0.28% to −2.8%) and differential stresses (−339 bars to −415 bars) vary across the sample, as do the orientations of the shortening (ε1) and extension (ε3) axes with no evidence of any twinning strain overprint (low negative expected values). Overall, the tectonic compression and shortening is sub-horizontal and sub-parallel to the Gishron fault (∼N-S) and Dead Sea transform plate boundary. Most strikingly, the 7 m.y. period of vein growth correlates exactly with the timing of fault activity as evident within the 10-km-wide deformation zone in this evolving plate boundary (between 20 Ma and 13 Ma).


2006 ◽  
Vol 426 (3-4) ◽  
pp. 281-293 ◽  
Author(s):  
H. Serdar Akyuz ◽  
Erhan Altunel ◽  
Volkan Karabacak ◽  
C. Caglar Yalciner

2020 ◽  
Vol 24 (4) ◽  
pp. 803-832 ◽  
Author(s):  
Iason Grigoratos ◽  
Valerio Poggi ◽  
Laurentiu Danciu ◽  
Graciela Rojo

Author(s):  
Roey Shimony ◽  
Zohar Gvirtzman ◽  
Michael Tsesarsky

ABSTRACT The Dead Sea Transform (DST) dominates the seismicity of Israel and neighboring countries. Whereas the instrumental catalog of Israel (1986–2017) contains mainly M<5 events, the preinstrumental catalog lists 14 M 7 or stronger events on the DST, during the past two millennia. Global Positioning System measurements show that the slip deficit in northern Israel today is equivalent to M>7 earthquake. This situation highlights the possibility that a strong earthquake may strike north Israel in the near future, raising the importance of ground-motion prediction. Deep and narrow strike-slip basins accompany the DST. Here, we study ground motions produced by intrabasin seismic sources, to understand the basin effect on regional ground motions. We model seismic-wave propagation in 3D, focusing on scenarios of Mw 6 earthquakes, rupturing different active branches of the DST. The geological model includes the major structures in northern Israel: the strike-slip basins along the DST, the sedimentary basins accompanying the Carmel fault zone, and the densely populated and industrialized Zevulun Valley (Haifa Bay area). We show that regional ground motions are determined by source–path coupling effects in the strike-slip basins, before waves propagate into the surrounding areas. In particular, ground motions are determined by the location of the rupture nucleation within the basin, the near-rupture lithology, and the basin’s local structure. When the rupture is located in the crystalline basement or along material bridges connecting opposite sides of the fault, ground motions behave predictably, decaying due to geometrical spreading and locally amplified atop sedimentary basins. By contrast, if rupture nucleates or propagates into shallow sedimentary units of the DST strike-slip basins, ground motions are amplified within, before propagating outside. Repeated reflections from the basin walls result in a “resonant chamber” effect, leading to stronger regional ground motions with prolonged durations.


Sign in / Sign up

Export Citation Format

Share Document