calcite veins
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 79)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
John P. Craddock ◽  
David H. Malone

ABSTRACT Calcite twinning analysis across the central, unbuttressed portion of the Sevier thin-skin thrust belt, using Cambrian–Cretaceous limestones (n = 121) and synorogenic calcite veins (n = 31), records a complex strain history for the Sevier belt, Idaho and Wyoming, USA. Plots of fabric types (layer-parallel shortening, layer-normal shortening, etc.), shortening and extension axes for the Paris thrust (west, oldest, n = 11), Meade thrust (n = 46), Crawford thrust (n = 15), Absaroka thrust (n = 55), Darby thrust (n = 13), Lander Peak klippe (n = 5), eastern Prospect thrust (n = 6), and distal Cretaceous foreland (n = 3) reveal a W-E layer-parallel shortening strain only in the Prospect thrust and distal foreland. Calcite twinning strains in all western, internal thrust sheets are complex mixes of layer-parallel (LPS), layer-normal (LNS), and non-plane strains in limestones and synorogenic calcite veins. This complex strain fabric is best interpreted as the result of oblique convergence to the west and repeated eastward overthrusting by the Paris thrust.


2022 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Alexandra Wallenberg ◽  
Betrand Gaschot ◽  
John A. Luczaj

ABSTRACT Rattlesnake Mountain is a Laramide uplift cored by Archean gneiss that formed by offset along two reverse faults with opposing dips, the result being an asymmetric anticline with a drape fold of Cambrian–Cretaceous sediments. Rattlesnake Mountain was uplifted ca. 57 Ma and was a structural buttress that impeded motion of upper-plate blocks of the catastrophic Heart Mountain slide (49.19 Ma). North of Pat O’Hara Mountain anticline, Rattlesnake Mountain anticline has a central graben that formed ca. 52 Ma (U-Pb age on vein calcite in normal faults) into which O- and C-depleted fluids propagated upward with hydrocarbons. The graben is defined by down-dropped Triassic Chugwater shales atop the anticline that facilitated motion of Heart Mountain slide blocks of Paleozoic limestones dolomite (i.e., the Ordovician Bighorn Dolomite and Mississippian Madison Limestone) onto, and over, Rattlesnake Mountain into the Bighorn Basin. Heart Mountain fault gouge was also injected downward into the bounding Rattlesnake Mountain graben normal faults (U-Pb age ca. 48.8 ± 5 Ma), based on O and C isotopes; there is no anisotropy of magnetic susceptibility fabric present. Calcite veins parallel to graben normal faults precipitated from meteoric waters (recorded by O and C isotopes) heated by the uplifting Rattlesnake Mountain anticline and crystallized at 57 °C (fluid inclusions) in the presence of oil. Calcite twinning strain results from graben injectites and calcite veins are different; we also documented a random layer-parallel shortening strain pattern for the Heart Mountain slide blocks in the ramp region (n = 4; west) and on the land surface (n = 5; atop Rattlesnake Mountain). We observed an absence of any twinning strain overprint (low negative expected values) in the allochthonous upper-plate blocks and in autochthonous carbonates directly below the Heart Mountain slide surface, again indicating rapid motion including horizontal rotation about vertical axes of the upper-plate Heart Mountain slide blocks during the Eocene.


2022 ◽  
Author(s):  
John P. Craddock ◽  
David H. Malone ◽  
Alex Konstantinou ◽  
John Spruell ◽  
Ryan Porter

ABSTRACT We report the results of 167 calcite twinning strain analyses (131 limestones and 36 calcite veins, n = 7368 twin measurements)t from the Teton–Gros Ventre (west; n = 21), Wind River (n = 43), Beartooth (n = 32), Bighorn (n = 32), and Black Hills (east; n = 11) Laramide uplifts. Country rock limestones record only a layer-parallel shortening (LPS) strain fabric in many orientations across the region. Synorogenic veins record both vein-parallel shortening (VPS) and vein-normal shortening (VNS) fabrics in many orientations. Twinning strain overprints were not observed in the limestone or vein samples in the supracrustal sedimentary veneer (i.e., drape folds), thereby suggesting that the deformation and uplift of Archean crystalline rocks that form Laramide structures were dominated by offset on faults in the Archean crystalline basement and associated shortening in the midcrust. The twinning strains in the pre-Sevier Jurassic Sundance Formation, in the frontal Prospect thrust of the Sevier belt, and in the distal (eastern) foreland preserve an LPS oriented approximately E-W. This LPS fabric is rotated in unique orientations in Laramide uplifts, suggesting that all but the Bighorn Mountains were uplifted by oblique-slip faults. Detailed field and twinning strain studies of drape folds identified second-order complexities, including: layer-parallel slip through the fold axis (Clarks Fork anticline), attenuation of the sedimentary section and fold axis rotation (Rattlesnake Mountain), rotation of the fold axis and LPS fabric (Derby Dome), and vertical rotations of the LPS fabric about a horizontal axis with 35% attenuation of the sedimentary section (eastern Bighorns). Regional cross sections (E-W) across the Laramide province have an excess of sedimentary veneer rocks that balance with displacement on a detachment at 30 km depth and perhaps along the Moho discontinuity at 40 km depth. Crustal volumes in the Wyoming Province balance when deformation in the western hinterland is included.


2022 ◽  
Vol 9 ◽  
Author(s):  
Piyaphong Chenrai ◽  
Thitiphan Assawincharoenkij ◽  
John Warren ◽  
Sannaporn Sa-nguankaew ◽  
Sriamara Meepring ◽  
...  

Bedding-parallel fibrous calcite veins crop out at two Permian carbonate localities in the Phetchabun area, central Thailand, within the Nam Duk and Khao Khwang Formations. Samples are studied to determine their petrographic, geochemical and isotopic character, depositional and diagenetic associations and controls on the formation of fibrous calcite across the region. Biomarker and non-biomarker parameters are used to interpret organic matter sources in the vein-hosting units, the depositional environment and levels of source rock maturation in order to evaluate source rock potential in the two Formations. Carbon and oxygen isotope values of the veins and the host are determined to discuss the source of carbonates and diagenetic conditions. The petroleum assessment from the Khao Khwang and Nam Duk Formations suggests that both Formations are a petroleum potential source rock with type II/III kerogen deposited in an estuarine environment or a shallow marine environment and a slope-to-basin marine environment or an open marine environment, respectively. The bedding-parallel fibrous calcite veins from the Khao Khwang and Nam Duk Formations are divided into two types: 1) beef and, 2) cone-in-cone veins. The carbon and oxygen isotope compositions from the fibrous calcite veins suggest that the calcite veins could be precipitated from a carbon source generated in the microbial methanogenic zone. The results in this study provide a better understanding of the interrelationship between the bedding-parallel fibrous calcite veins and petroleum source rock potential.


Author(s):  
Ao Su ◽  
Honghan Chen ◽  
Yue-xing Feng ◽  
Jian-xin Zhao

To date, few isotope age constraints on primary oil migration have been reported. Here we present U-Pb dating and characterization of two fracture-filling, oil inclusion-bearing calcite veins hosted in the Paleocene siliciclastic mudstone source rocks in Subei Basin, China. Deposition age of the mudstone formation was estimated to be ca. 60.2−58.0 Ma. The first vein consists of two major phases: a microcrystalline-granular (MG) calcite phase, and a blocky calcite phase, each showing distinctive petrographic features, rare earth element patterns, and carbon and oxygen isotope compositions. The early MG phase resulted from local mobilization of host carbonates, likely associated with disequilibrium compaction over-pressuring or tectonic extension, whereas the late-filling blocky calcite phase was derived from overpressured oil-bearing fluids with enhanced fluid-rock interactions. Vein texture and fluorescence characteristics reveal at least two oil expulsion events, the former represented by multiple bitumen veinlets postdating the MG calcite generation, and the latter marked by blue-fluorescing primary oil inclusions synchronous with the blocky calcite cementation. The MG calcite yields a laser ablation−inductively coupled plasma−mass spectrometry U-Pb age of 55.6 ± 1.4 Ma, constraining the earliest timing of the early oil migration event. The blocky calcite gives a younger U-Pb age of 47.8 ± 2.3 Ma, analytically indistinguishable from the U-Pb age of 46.5 ± 1.7 Ma yielded by the second calcite vein. These two ages define the time of the late oil migration event, agreeing well with the age estimate of 49.7−45.2 Ma inferred from fluid-inclusion homogenization temperature and published burial models. Thermodynamic modeling shows that the oil inclusions were trapped at ∼27.0−40.9 MPa, exceeding corresponding hydrostatic pressures (23.1−26.7 MPa), confirming mild-moderate overpressure created by oil generation-expulsion. This integrated study combining carbonate U-Pb dating and fluid-inclusion characterization provides a new approach for reconstructing pressure-temperature-composition-time points in petroleum systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tong Ha Lee ◽  
Jung Hun Seo ◽  
Bong Chul Yoo ◽  
Bum Han Lee ◽  
Seung Hee Han ◽  
...  

Haman, Gunbuk, and Daejang deposits are neighboring vein-type hydrothermal Cu deposits located in the SE part of the Korean Peninsula. These three deposits are formed by magmatic-hydrothermal activity associated with a series of Cretaceous granodioritic intrusions of the Jindong Granitoids, which have created a series of veins and alterations in a hornfelsed shale formation. The copper deposits have common veining and alteration features: 1) a pervasive chlorite-epidote alteration, cut by 2) Cu-Pb-Zn-bearing quartz veins with a tourmaline-biotite alteration, and 3) the latest barren calcite veins. Chalcopyrite, pyrite, and pyrrhotite are common ore minerals in the three deposits. Whereas magnetite is a dominant mineral in the Haman and Gunbuk deposits, no magnetite is present, but sphalerite and galena are abundant in the Daejang deposit. Ore-bearing quartz veins have three types of fluid inclusions: 1) liquid-rich, 2) vapor-rich, and 3) brine inclusions. Hydrothermal temperatures obtained from the brine inclusion assemblages are about 340–600, 250–500, and 320–460°C in the Haman, Gunbuk, and Daejang deposits, respectively. The maximum temperatures (from 460 to 600°C) recorded in the fluid inclusions of the three deposits are higher than those of the Cu ore precipitating temperature of typical porphyry-like deposits (from 300 to 400°C). Raman spectroscopy of vapor inclusions showed the presence of CO2 and CH4 in the three deposits, which indicates relatively reduced hydrothermal conditions as compared with typical porphyry deposits. The Rb/Sr ratios and Cs concentrations of brine inclusions suggest that the Daejang deposit was formed by a later and more fractionated magma than the Haman and Gunbuk deposits, and the Daejang deposit has lower Fe/Mn ratios in brine inclusions than the Haman and Gunbuk deposits, which indicates contrasting redox conditions in hydrothermal fluids possibly caused by an interaction with a hosting shale formation. In brines, concentrations of base metals do not change significantly with temperature, which suggests that significant ore mineralization precipitation is unlikely below current exposure levels, especially at the Haman deposit. Ore and alteration mineral petrography and fluid inclusions suggest that the Haman deposit was formed near the top of the deep intrusion center, whereas the Gunbuk deposit was formed at a shallower intrusion periphery. The Daejang deposit was formed later at a shallow depth by relatively fractionated magma.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1177
Author(s):  
Agnieszka Ciurej ◽  
Monika Struska ◽  
Anna Wolska ◽  
Wojciech Chudzik

There are numerous traces of mining activity in the Miedzianka Mountain (Świętokrzyskie Mountains, Poland), because copper and silver ores have been mined in this region since at least the 13th century. The history of scientific research on the Miedzianka Mountain ore deposit spans almost 200 years. Almost 40 minerals have been found: ore minerals of Cu and Fe, and also secondary minerals, including carbonates, sulphates and even very rare arsenates, phosphates and vanadates. Three new minerals have been found, staszicite, lubeckite and miedziankite, but their chemical composition has not been precisely determined and therefore their names have not been approved by the International Mineralogical Association (IMA). The Miedzianka Mountain deposit is an important area on the map of educational activities. It is included in the “Świętokrzyskie Archaeological and Geological Trail” as a site of historical (mining and metallurgy) and natural (geological sciences) heritage. Despite the large potential, none of the underground workings (adits and shafts) are currently available to the public. Our research and exploration of the Teresa adit, which is one of the historical underground complexes of the Miedzianka Mountain, show that this adit displays a wide spectrum of topics in the field of mineralogy, geology and mining history. The Teresa adit, which is a 523 m system of underground corridors, contains 270 m of natural karst caves altered by mining works and is constituted of Upper Devonian limestones, locally cut by cherry shales. In several sites of the adit unique features can be observed, such as: (1) old mining works—galleries carved in the rock back in the 19th century; (2) interesting vein mineralization with secondary-colored copper carbonates and multi-colored calcite veins; (3) mineralization with azurite domination; and (4) karst phenomena (coatings, flowstone, dripstones and stalactites) in a cave part of the adit. The sites with unique features suggest that the Teresa adit is highly suitable to be presented to tourists. That is why we propose seven sites on the underground route that could be the basis for further projects to create a “geotouristic trail” in the Teresa adit. The proposal to make the Teresa adit available to tourists is in line with the tendency to protect the post-industrial landscape associated with former mining activities.


2021 ◽  
pp. jgs2021-066
Author(s):  
A. Tamas ◽  
R.E. Holdsworth ◽  
J.R. Underhill ◽  
D.M. Tamas ◽  
E.D. Dempsey ◽  
...  

The Inner Moray Firth Basin (IMFB) forms the western arm of the North Sea trilete rift system that initiated mainly during the Late Jurassic-Early Cretaceous with the widespread development of major NE-SW-trending dip-slip growth faults. The IMFB is superimposed over the southern part of the older Devonian Orcadian Basin. The potential influence of older rift-related faults on the kinematics of later Mesozoic basin opening has received little attention, partly due to the poor resolution of offshore seismic reflection data at depth. New field observations augmented by drone photography and photogrammetry, coupled with U-Pb geochronology have been used to explore the kinematic history of faulting in onshore exposures along the southern IMFB margin. Dip-slip N-S to NNE-SSW-striking Devonian growth faults are recognised that have undergone later dextral reactivation during NNW-SSE extension. The U-Pb calcite dating of a sample from the syn-kinematic calcite veins associated with this later episode shows that the age of fault reactivation is 131.73 ± 3.07 Ma (Hauterivian). The recognition of dextral-oblique Early Cretaceous reactivation of faults related to the underlying and older Orcadian Basin highlights the importance of structural inheritance in controlling basin- to sub-basin-scale architectures and how this influences the kinematics of IMFB rifting.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5635432


Author(s):  
John P. Craddock ◽  
Perach Nuriel ◽  
Andrew R.C. Kylander-Clark ◽  
Bradley R. Hacker ◽  
John Luczaj ◽  
...  

The onset of the Dead Sea transform has recently been reevaluated by U-Pb age-strain analyses of fault-related calcite taken from several fault strands along its main 500-km-long sector. The results suggest that the relative motion between Africa and Arabia north of the Red Sea was transferred northward to the Dead Sea transform as early as 20 Ma and along a ∼10-km-wide deformation zone that formed the central rift with contemporaneous bounding sinistral motion. The Gishron fault is the western bounding fault with normal and sinistral fault offsets that placed Proterozoic crystalline rocks and a cover of Cambrian sandstones in fault contact with Cretaceous-Eocene carbonates. Fault-related calcite veins are common in the Gishron fault zone, and we report the results of a detailed study of one sample with nine calcite fillings. Low fluid inclusion entrapment temperatures <50 °C, stable isotopes values of −3.3−0‰ (δ13C) and −15 to −13‰ (δ18O), and low rare earth element (REE) concentrations within the nine calcite fault fillings indicate that a local, meteoric fluid fed the Gishron fault zone over ca. 7 Ma at depths of <2 km. Laser ablation U-Pb ages within the thin section range from 20.37 Ma to 12.89 Ma and allow a detailed fault-filling chronology with the oldest calcite filling in the middle, younging outward with shearing between the oldest eight zones, all of which are finally crosscut by a perpendicular (E-W) vein. All nine calcite fillings have unique mechanical twinning strain results (n = 303 grains). Shortening strain magnitudes (−0.28% to −2.8%) and differential stresses (−339 bars to −415 bars) vary across the sample, as do the orientations of the shortening (ε1) and extension (ε3) axes with no evidence of any twinning strain overprint (low negative expected values). Overall, the tectonic compression and shortening is sub-horizontal and sub-parallel to the Gishron fault (∼N-S) and Dead Sea transform plate boundary. Most strikingly, the 7 m.y. period of vein growth correlates exactly with the timing of fault activity as evident within the 10-km-wide deformation zone in this evolving plate boundary (between 20 Ma and 13 Ma).


Sign in / Sign up

Export Citation Format

Share Document