Imaging the shallow crustal velocity structure of the Qingchengzi ore field on the Liaodong Peninsula, China, with a short-period dense array using ambient noise tomography

2021 ◽  
pp. 228913
Author(s):  
Tongtong Xie ◽  
Tao Xu ◽  
Yinshuang Ai ◽  
Qingdong Zeng ◽  
Wei Zhang ◽  
...  
2013 ◽  
Vol 194 (3) ◽  
pp. 1941-1954 ◽  
Author(s):  
L. M. Warren ◽  
S. L. Beck ◽  
C. B. Biryol ◽  
G. Zandt ◽  
A. A. Ozacar ◽  
...  

2019 ◽  
Vol 110 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Yuting Zhang ◽  
Hongyi Li ◽  
Yafen Huang ◽  
Min Liu ◽  
Yong Guan ◽  
...  

ABSTRACT The Longmen Shan fault zone that was shocked by the 12 May 2008 M 8.0 Wenchuan earthquake acts as the boundary between the western edge of the Sichuan basin and the steep eastern margin of the Songpan-Ganze block. In this study, continuous seismic data recorded by 176 temporary short-period seismic stations between 22 October and 20 November 2017 are used to study the shallow crustal structure of the Longmen Shan fault zone by applying ambient-noise tomography and horizontal-to-vertical spectral ratio (HVSR) analysis. From ambient-noise analysis, fundamental-mode Rayleigh-wave dispersion curves between 0.25 and 1 Hz are extracted. Then, the direct surface-wave tomographic method is used to invert surface-wave dispersion data for the 3D shallow shear-wave velocity structure. Our results show that low shear-wave velocities are mainly distributed around the surface rupture trace of the Wenchuan earthquake at least down to 2 km. From the HVSR method, the sites are sorted into two types according to the pattern of HVSR curves with single peak or double peak. By converting frequency to depth, the results show that the sediments are thicker near the surface rupture. The low-velocity zone based on ambient-noise tomography agrees well with the distribution of sedimentary cover estimated from HVSR, which are generally consistent with geological information. Our results provide high-resolution shallow crustal velocity structure for future detailed studies of the Longmen Shan fault.


2021 ◽  
Vol 9 ◽  
Author(s):  
Achmad F. N. Sarjan ◽  
Zulfakriza Zulfakriza ◽  
Andri D. Nugraha ◽  
Shindy Rosalia ◽  
Shengji Wei ◽  
...  

We have successfully conducted the first ambient noise tomography on the island of Lombok, Indonesia using local waveform data observed at 20 temporary stations. Ambient noise tomography was used to delineate the seismic velocity structure in the upper crust. The waveform data were recorded from August 3rd to September 9th, 2018, using short-period and broadband sensors. There are 185 Rayleigh waves retrieved from cross-correlating the vertical components of the seismograms. We used frequency-time analysis (FTAN) to acquire the interstation group velocity from the dispersion curves. Group velocity was obtained for the period range of 1 s to 6 s. The group velocity maps were generated using the subspace inversion method and Fast Marching Method (FMM) to trace ray-paths of the surface waves through a heterogeneous medium. To extract the shear wave velocity (Vs) from the Rayleigh wave group velocity maps, we utilize the Neighborhood Algorithm (NA) method. The 2-D tomographic maps provide good resolution in the center and eastern parts of Lombok. The tomograms show prominent features with a low shear velocity that appears up to 4 km depth beneath Rinjani Volcano, Northern Lombok, and Eastern Lombok. We suggest these low velocity anomalies are associated with Quaternary volcanic products, including the Holocene pyroclastic deposits of Samalas Volcano (the ancient Rinjani Volcano) which erupted in 1257. The northeast of Rinjani Volcano is characterized by higher Vs, and we suggest this may be due to the presence of igneous intrusive rock at depth.


Sign in / Sign up

Export Citation Format

Share Document