dense seismic array
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 28)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Author(s):  
He Huang ◽  
Xuzhang Shen ◽  
Jian Xu ◽  
Rui Gao ◽  
Wentian Wang ◽  
...  

2021 ◽  
Vol 118 (28) ◽  
pp. e2023757118
Author(s):  
Ugo Nanni ◽  
Florent Gimbert ◽  
Philippe Roux ◽  
Albanne Lecointre

Subglacial water flow strongly modulates glacier basal motion, which itself strongly influences the contributions of glaciers and ice sheets to sea level rise. However, our understanding of when and where subglacial water flow enhances or impedes glacier flow is limited due to the paucity of direct observations of subglacial drainage characteristics. Here, we demonstrate that dense seismic array observations combined with an innovative systematic seismic source location technique allows the retrieval of a two-dimensional map of a subglacial drainage system, as well as its day-to-day temporal evolution. We observe with unprecedented detail when and where subglacial water flows through a cavity-like system that enhances glacier flow versus when and where water mainly flows through a channel-like system that impedes glacier flow. Most importantly, we are able to identify regions of high hydraulic connectivity within and across the cavity and channel systems, which have been identified as having a major impact on the long-term glacier response to climate warming. Applying a similar seismic monitoring strategy in other glacier settings, including for ice sheets, may help to diagnose the susceptibility of their dynamics to increased meltwater input due to climate warming.


2021 ◽  
Author(s):  
Marco Piantini ◽  
Florent Gimbert ◽  
Maarten Bakker ◽  
Alain Recking ◽  
Ugo Nanni

<p>Over the last decade, seismic techniques have provided unique observational constraints on Earth surface processes. In particular, dense seismic array monitoring has recently allowed the detailed investigation of noise sources and their spatiotemporal dynamics. Despite their large potential, these approaches have not yet been applied for the monitoring of fluvial processes. In a context where traditional methods often do not provide data with adequate temporal and spatial resolution, the use of dense arrays could allow the identification and tracking of different sources of river-induced seismic ground vibrations (e.g. turbulence and bedload transport), which would provide insight in river functioning and morphological evolution.</p><p>Here, we study the potential of dense seismic array monitoring by analysing data from a 4-month long field survey, which we conducted in summer 2019 along a 600-m long braided reach of the Séveraisse river (French Alps). We installed a network of 40 to 80 seismometers on both river banks, predominantly deployed in 4-seismometer subarrays, and we supplement these seismic observations with flow gauging measurements and time-lapse imagery covering the study area. We present a preliminary analysis that focuses on a high-flow event that occurred at the end of the melt season. During this event, we observe impulsive signals that are coherently detected over the array, and which we interpret as being associated with the bedload transport of clusters of coarse grains. Through phase-delay analysis we are able to locate episodes of motion at high temporal resolution and investigate their spatiotemporal dynamics with respect to river morphology and morphological changes observed from the time-lapse images. Our work demonstrates the unique capability of using dense seismic arrays to better understand the fluvial processes that play an important role in storing and transferring sediments in braided rivers.</p>


Sign in / Sign up

Export Citation Format

Share Document