1,3-Dipolar cycloaddition reactions on carbohydrate-based templates: synthesis of spiro-isoxazolines and 1,2,4-oxadiazoles as glycogen phosphorylase inhibitors

2006 ◽  
Vol 47 (34) ◽  
pp. 6143-6147 ◽  
Author(s):  
Mahmoud Benltifa ◽  
Sébastien Vidal ◽  
David Gueyrard ◽  
Peter G. Goekjian ◽  
Moncef Msaddek ◽  
...  
2020 ◽  
Vol 17 ◽  
Author(s):  
Naoufel Ben Hamadi

Aims: In this aim, we have developed this work to recommend an original route for the preparation of triazole derivatives. Background: Carbohydrates containing 1,2,3-triazole derivatives have various biological activities. Due to their advantageous and biological property, they are eye-catching synthetic targets in the arsenal of organic chemistry. Thus, finding green and efficient methods, as well as using ball millig procedure for the synthesis of these heterocycles is of interest to organic chemistry researchers. Objective: The objective of this study was to synthesize carbohydrate-derived triazoles under high-speed vibration milling conditions and investigate their properties. Materials and Method: A mixture of glycoside azide derivatives (1 mmol) and prop-2-yn-1-ol (1.5 mmol) in the presence of copper (I) was vigorously shaken under vibration milling conditions at 650 rpm with three balls for 15 min. The deprotection of the resulting triazole derivatives was effected by treatment with 4M hydrochloric acid in methanol under reflux. Results and Discussion: A short and convenient route to synthesize carbohydrate-derived triazoles, based in a ball-mill via 1,3-dipolar cycloaddition reactions to prop-2-yn-1-ol was developed. Cleavage of the isopropylidene protecting group provided water-soluble triazoles, evaluated as glycogen phosphorylase inhibitors. 1-[6-(4-Hydroxymethyl-[1,2,3]triazol-1-yl)- 2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxol-4-yl]-ethane-1,2-diol was the best inhibitor of rabbit muscle glycogen phosphorylase b (IC50 = 60 μM). Conclusion: In summary, we developed new, short and convenient routes to glucose-derived 1,2,3-triazole based on 1,3- dipolar cycloaddition reactions flowed by ball milling. Use of isopropylidene protective groups gave access to the analogous deprotected water-soluble motifs, analogous to known inhibitors of glycogen phosphorylase.


2017 ◽  
Vol 24 (4) ◽  
pp. 384-403 ◽  
Author(s):  
Demetres Leonidas ◽  
Joseph Hayes ◽  
Atsushi Kato ◽  
Vassiliki Skamnaki ◽  
Demetra Chatzileontiadou ◽  
...  

2013 ◽  
Vol 17 (18) ◽  
pp. 1929-1956 ◽  
Author(s):  
Natarajan Arumugam ◽  
Raju Kumar ◽  
Abdulrahman Almansour ◽  
Subbu Perumal

2002 ◽  
Vol 67 (3) ◽  
pp. 353-364 ◽  
Author(s):  
Petr Melša ◽  
Ctibor Mazal

Diastereoselectivity of 1,3-dipolar cycloaddition reactions of benzyl azide, diazomethane, a nitrile oxide and a nitrile imine to α-methylidene-γ-lactone dipolarophile was effectively controlled by a bulky γ-substituent, 4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl in γ-position of the dipolarophile. The dipoles added from the less hindered face of the double bond with an excellent selectivity. Enantiomerically pure dipolarophile was prepared from the easily available (S)-5-oxotetrahydrohydrofuran-2-carboxylic acid.


Sign in / Sign up

Export Citation Format

Share Document