Mechanochemical Synthesis and reactivity of 1,2,3-Triazole Carbohydrate Derivatives as Glycogen Phosphorylase Inhibitors

2020 ◽  
Vol 17 ◽  
Author(s):  
Naoufel Ben Hamadi

Aims: In this aim, we have developed this work to recommend an original route for the preparation of triazole derivatives. Background: Carbohydrates containing 1,2,3-triazole derivatives have various biological activities. Due to their advantageous and biological property, they are eye-catching synthetic targets in the arsenal of organic chemistry. Thus, finding green and efficient methods, as well as using ball millig procedure for the synthesis of these heterocycles is of interest to organic chemistry researchers. Objective: The objective of this study was to synthesize carbohydrate-derived triazoles under high-speed vibration milling conditions and investigate their properties. Materials and Method: A mixture of glycoside azide derivatives (1 mmol) and prop-2-yn-1-ol (1.5 mmol) in the presence of copper (I) was vigorously shaken under vibration milling conditions at 650 rpm with three balls for 15 min. The deprotection of the resulting triazole derivatives was effected by treatment with 4M hydrochloric acid in methanol under reflux. Results and Discussion: A short and convenient route to synthesize carbohydrate-derived triazoles, based in a ball-mill via 1,3-dipolar cycloaddition reactions to prop-2-yn-1-ol was developed. Cleavage of the isopropylidene protecting group provided water-soluble triazoles, evaluated as glycogen phosphorylase inhibitors. 1-[6-(4-Hydroxymethyl-[1,2,3]triazol-1-yl)- 2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxol-4-yl]-ethane-1,2-diol was the best inhibitor of rabbit muscle glycogen phosphorylase b (IC50 = 60 μM). Conclusion: In summary, we developed new, short and convenient routes to glucose-derived 1,2,3-triazole based on 1,3- dipolar cycloaddition reactions flowed by ball milling. Use of isopropylidene protective groups gave access to the analogous deprotected water-soluble motifs, analogous to known inhibitors of glycogen phosphorylase.

2006 ◽  
Vol 47 (34) ◽  
pp. 6143-6147 ◽  
Author(s):  
Mahmoud Benltifa ◽  
Sébastien Vidal ◽  
David Gueyrard ◽  
Peter G. Goekjian ◽  
Moncef Msaddek ◽  
...  

2007 ◽  
Vol 2007 (8) ◽  
pp. 472-474 ◽  
Author(s):  
Ahmad M. Farag ◽  
Kamal M. Dawood ◽  
Nabila A. Khedr

A regioselective synthesis is reported of a series of polysubstituted 1,2,4-triazoles and 4,4′- and 5,5′-bi-(1,2,4-triazoles) via 1,3-dipolar cycloaddition reactions of nitrilimines with some aza- and diaza-butadiene derivatives.


2021 ◽  
pp. 00-00
Author(s):  
Youde Wang ◽  
Zhiwei Yan ◽  
Yachun Guo ◽  
Liying Zhang

Glycogen phosphorylase (GP) is a key enzyme of glycogen catabolism, so it is significant to discover a new GP inhibitor. A series of benzazepinone derivatives were discovered as GP inhibitors with potent activity. Among these derivatives, compound 5d showed significant potential against rabbit muscle GPa (IC50 = 0.25 ± 0.05 μM) and cellular efficacy. The in vivo study revealed that 5d significantly inhibited increases in fasting blood glucose level in two kinds of hyperglycemic mice models. The possible binding mode of compound 5d was explored based on molecular docking simulations. These results indicated that derivatives with benzazepinone were potential chemical entities against hyperglycemia.


2002 ◽  
Vol 367 (2) ◽  
pp. 443-450 ◽  
Author(s):  
Birgitte ANDERSEN ◽  
Niels WESTERGAARD

Two distinct glycogen phosphorylase inhibitors, 5-chloro-1H-indole-2-carboxylic acid [1-(4-fluorobenzyl)-2-(4-hydroxy-piperidin-1-yl)-2-oxoethyl]amide (CP-320,626) and 1,4-dideoxy-1,4-d-arabinitol (DAB), were characterized in vitro with respect to the influence of glucose on their potencies. CP-320,626 has previously been shown to bind to a newly characterized indole site, whereas DAB seems to act as a glucose analogue, but with slightly different properties from those of glucose. When analysed in pig liver glycogen phosphorylase a (GPa) activity assays, the two inhibitors showed very different properties. When GPa activity was measured in the physiological direction (glycogenolysis), DAB was the most potent inhibitor with an IC50 value of 740±9nM compared with the IC50 value for CP-320-626 of 2.39±0.37μM. There was no effect of glucose on the inhibitory properties of DAB, whereas a glucose analogue N-acetyl-β-d-glucopyranosylamine (1-GlcNAc) antagonized the effect of DAB. Likewise, there was no synergistic effect of CP-320,626 and glucose, whereas CP-320,626 and 1-GlcNAc inhibited GPa in synergy. Moreover, the synergistic effect of glucose and CP-320,626 was GPa-isoform-specific, since CP-320,626 and glucose inhibited rabbit muscle GPa in synergy when the GPa activity was measured towards glycogenolysis. When GPa activity was measured towards glycogen synthesis, CP-320,626 showed a synergistic effect with glucose, whereas the effect of DAB was slightly antagonized by glucose in this assay direction. Caffeine was included in the investigation as a control GP inhibitor, and both glucose and 1-GlcNAc potentiated the effect of caffeine independent of the assay direction. In primary cultured rat hepatocytes 1-GlcNAc and CP-320,626 inhibited basal and glucagon-induced glycogenolysis in synergy, whereas the ability of DAB to inhibit basal or glucagon-induced glycogenolysis was unaltered by 1-GlcNAc. Glucose had no effect on either CP-320,626 or DAB inhibition of glycogenolysis in cultured rat hepatocytes. In conclusion, the present study shows that the two GP inhibitors are kinetically very distinct and neither of the inhibitors demonstrates a physiologically relevant glucose dependence in vitro.


2015 ◽  
Vol 44 (11) ◽  
pp. 5045-5048 ◽  
Author(s):  
Rebecca L. Melen ◽  
Douglas W. Stephan

The 1,3-dipolar cycloaddition reactions of the electron deficient boron azide, (C6F5)2BN3 (1) with the electron-poor acetylenes RO2CCCCO2R (R = Me, Et) afforded the new mono- and bis-1,2,3-triazole derivatives 5 and 6.


Sign in / Sign up

Export Citation Format

Share Document