Additivity of electron correlation energy and the ab initio MO calculation of (0–0) S1←S0 transition energies: polychlorinated dibenzofurans

2004 ◽  
Vol 710 (1-3) ◽  
pp. 19-23 ◽  
Author(s):  
Tomoko Imasaka ◽  
Shoji Hirokawa
2000 ◽  
Vol 78 (12) ◽  
pp. 1575-1586 ◽  
Author(s):  
John M Cullen

Using a second quantized formulation, an approximate diatomics in molecules (DIM) theory is presented in which all three- and four-centered electronic integrals are neglected. To ameliorate the effects of this approximation, the DIM one electron operator is constructed so that the true ab initio first-order density matrix and total energy are reproduced at the Hartree–Fock level. The resulting model was extensively tested for a variety of basis sets for its capability of capturing both the dynamic and nondynamic components of the electron correlation energy as well as the energies of excited electronic states. A modified method in which the DIM one-electron operator is formed from the initial extended Hückel guess of the Hartree–Fock orbitals was also found to produce excellent results.Key words: DIM, electron correlation energy, excited states, semiempirical.


Relativistic ab initio calculations of inter-ionic potential energies are used to develop a reliable non-empirical method for predicting the properties of ionic solids containing the heaviest ions. A physically realistic method for describing the non-negligible differences between free and in-crystal ion wavefunctions is described. Functions are presented for describing the partial quenching, arising from ion wavefunction overlap, of the standard long-range form of the inter-ionic dispersive attractions. These attractions are shown to be distinct from the contributions to the inter-ionic potentials that arise from that portion of the electron correlation energy which is nonzero solely because of overlap of the ion wavefunctions. The results presented for NaCl, MgO and the fluorides of Li, Na, Ag and Pb show that these modifications overcome the deficiencies of previous calculations. Ab initio predictions of the closest cation-cation and anion-anion short-range interactions, which are not available from semi-empirical fits to experimental data, are presented. The non-point coulombic interactions between pairs of anions, derived by adding the dispersive attractions to the short-range interactions, are compared with previous semi-empirical and approximate ab initio results. The uncorrelated short-range inter-ionic potentials computed exactly are compared with those predicted from electron-gas theory. The use of the electron-gas approximation to describe any of these potentials degrades the quality of the predicted crystal properties.


Sign in / Sign up

Export Citation Format

Share Document