crystal properties
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 61)

H-INDEX

45
(FIVE YEARS 3)

2022 ◽  
Vol 154 ◽  
pp. 111607
Author(s):  
Arthur A.B. Pessa ◽  
Rafael S. Zola ◽  
Matjaž Perc ◽  
Haroldo V. Ribeiro

Author(s):  
Николай Васильевич Сидоров ◽  
Наталья Александровна Теплякова ◽  
Михаил Николаевич Палатников

Методом ИК-спектроскопии в области валентных колебаний OH - групп выполнен анализ комплексных дефектов, обусловленных наличием в структуре кристалла водородных связей, в номинально чистых кристаллах ниобата лития конгруэнтного и стехиометрического состава с разным отношением Li / Nb, а также в кристаллах LiNbO: Zn(0,04 - 6,5 мол.% ZnO), легированных цинком в широком диапазоне концентраций, полученным по технологии прямого легирования расплава. Выявлено влияние легирующих примесей на концентрацию OH - групп, вид и локализацию комплексных дефектов в структуре кристалла. Показано, что изменение количества позиций атомов водорода в структуре кристалла LiNbO позволяет с достаточной точностью судить о соответствии его состава стехиометрическому или конгруэнтному составу. Для легированных кристаллов LiNbO : Zn(0,04 - 6,5 мол.% ZnO) получены данные, свидетельствующие об изменении при прохождении концентрационных порогов характера комплексообразования OH - групп с точечными дефектами катионной подрешетки. При этом, вследствие изменения механизма вхождения легирующего катиона в структуру кардинально изменяются свойства кристалла. Вклад в различие частот (и, соответственно, в значение квазиупругих постоянных связей OH -) в спектре конгруэнтного кристалла и легированных кристаллов может вносить также различие электроотрицательностей и ионных радиусов основных и легирующих катионов. An analysis of complex defects was carried out by IR-spectroscopy method in the area of OH - groups stretching vibrations. The defects are caused by hydrogen bonds present in the structure of nominally pure congruent lithium niobate crystals, crystals of stoichiometric composition with a different Li / Nb ratio, as well as in LiNbO: Zn(0,04 - 6,5 мол.% ZnO) crystals doped in a wide range of concentrations due to direct doping of the melt method. Dopants were determined to influence OH - groups concentration, type and localization of complex defects in the crystals structure. A change in the amount of hydrogen sites in the LiNbO crystals structure was shown to evaluate the composition either stoichiometric or congruent. The character of OH - groups complexing with cation sublattice point defects was shown to change when doped crystals LiNbO: Zn(0,04 - 6,5 мол.% ZnO) trespass concentration thresholds. Dopant incorporation mechanism changes at this drastically, thus crystal properties also change quite sharply. Frequencies (as well as quasi-elastic constants of OH - bonds) change in congruent and doped crystals due to a difference in electronegativities and ionic radii of the main and dopant cations.


Author(s):  
Tamador Alkhidir ◽  
Zeinab M. Saeed ◽  
Abeer F. Shunnar ◽  
Eman Abujami ◽  
Runyararo M. Nyadzayo ◽  
...  

2021 ◽  
Vol 12 (35) ◽  
pp. 8521-8527
Author(s):  
Tianhao Su ◽  
Yaning Cui ◽  
Zhengheng Lian ◽  
Minglang Hu ◽  
Minjie Li ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Enny Zulaika ◽  
Muhammad Andry Prio Utomo ◽  
Ajeng Selvyana Pangestu ◽  
Nur Hidayatul Alami ◽  
Maya Shovitri ◽  
...  

Abstract. Zulaika E, Utomo MAP, Pangestu AS, Alami NH, Shovitri M, Prasetyo EN, Setiawan E, Luqman A, Kuswytasari ND, Irawan C. 2021. Novel carbonatogenic bacterial strain isolated from limestone quarry in East Java, Indonesia to improve concrete performance. Biodiversitas 22: 3890-3898. Carbonatogenic bacteria can precipitate CaCO3 in the form of calcite, aragonite, or vaterite. Calcite has the potential to be applied for strengthening concrete structures. This research aims to explore several new bacterial strains that can precipitate calcium carbonate leading to produce calcite and could be useful for strengthening concrete structures. Soil and stalactite samples were taken from a well-known limestone quarry in East Java, Indonesia. The isolated bacteria species were identified using 16S rRNA gene sequences. CaCO3 crystal properties were characterized using X-Ray Diffraction and Scanning Electron Microscopy. Six novels isolated CaCO3 precipitating bacterial strains; Bacillus huizhouensis JA1; B. galactosidilyticus JB3; B. niacini AK4, B. lentus SU1, Lysinibacillus macroides JB2, and Sporosarcina soli JA4 were successfully isolated and have the potential to enhance concrete strength. All isolates were able to produce CaCO3 in calcite form except B. galactosidilyticus JB3. The experimental concrete with the addition of bacterial cells showed higher compressive strength and maximum load compared to control concrete and met the requirements for building construction so that it could be applied for building structure materials.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2695
Author(s):  
Marcin Lemanowicz ◽  
Anna Mielańczyk ◽  
Tomasz Walica ◽  
Milena Kotek ◽  
Andrzej Gierczycki

The application of polymers as a tool in the crystallization process is gaining more and more interest among the scientific community. According to Web of Science statistics the number of papers dealing with “Polymer induced crystallization” increased from 2 in 1990 to 436 in 2020, and for “Polymer controlled crystallization”—from 4 in 1990 to 344 in 2020. This is clear evidence that both topics are vivid, attractive and intensively investigated nowadays. Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments, antiscalants, nanoporous materials and pharmaceuticals to semiconductor particles. However, a rapid development in precise and reliable measuring methods and techniques would enable one to better describe phenomena involved, to formulate theoretical models, and probably most importantly, to develop practical indications for how to appropriately lead many important processes in the industry. It is clearly visible at the first glance through a number of representative papers in the area, that many of them are preoccupied with the testing and production of pharmaceuticals, while the rest are addressed to new crystalline materials, renewable energy, water and wastewater technology and other branches of industry where the crystallization process takes place. In this work, authors gathered and briefly discuss over 100 papers, published in leading scientific periodicals, devoted to the influence of polymers on crystallizing solutions.


Fibers ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 51
Author(s):  
Eric Worlawoe Gaba ◽  
Bernard O. Asimeng ◽  
Elsie Effah Kaufmann ◽  
Solomon Kingsley Katu ◽  
E. Johan Foster ◽  
...  

Evidence-based research had shown that elevated alkali treatment of pineapple leaf fiber (PALF) compromised the mechanical properties of the fiber. In this work, PALF was subjected to differential alkali concentrations: 1, 3, 6, and 9% wt/wt to study the influence on the mechanical and crystal properties of the fiber. The crystalline and mechanical properties of untreated and alkali-treated PALF samples were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and tensile testing analysis. The XRD results indicated that crystal properties of the fibers were modified with 6% wt/wt alkali-treated PALF recording the highest crystallinity and crystallite size of 76% and 24 nm, respectively. The FTIR spectra suggested that all alkali-treated PALF samples underwent lignin and hemicellulose removal to varying degrees. An increase in the crystalline properties improved the mechanical properties of the PALF treated with alkali at 6% wt/wt, which has the highest tensile strength (1620 MPa). Although the elevated alkali treatment resulted in decreased mechanical properties of PALF, crystallinity generally increased. The findings revealed that the mechanical properties of PALF not only improve with increasing crystallinity and crystallite size, but are also dependent on the intermediate bond between adjacent cellulose chains.


Sign in / Sign up

Export Citation Format

Share Document