Evaluation and comparison of in vitro intrinsic clearance rates measured using cryopreserved hepatocytes from humans, rats, and rainbow trout

Toxicology ◽  
2021 ◽  
pp. 152819
Author(s):  
Sherry R. Black ◽  
John W. Nichols ◽  
Kellie A. Fay ◽  
Sharlene R. Matten ◽  
Scott G. Lynn
2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
John W. Nichols ◽  
Duane B. Huggett ◽  
Jon A. Arnot ◽  
Patrick N. Fitzsimmons ◽  
Christina E. Cowan-Ellsberry

2014 ◽  
Vol 48 (16) ◽  
pp. 9486-9495 ◽  
Author(s):  
Heike Laue ◽  
Hans Gfeller ◽  
Karen J. Jenner ◽  
John W. Nichols ◽  
Susanne Kern ◽  
...  

2014 ◽  
Vol 17 (3) ◽  
pp. 453-458 ◽  
Author(s):  
J. Małaczewska ◽  
A. K. Siwicki ◽  
R. Wójcik ◽  
W. a. Turski ◽  
E. Kaczorek

Abstract Kynurenic acid (KYNA), an endogenous neuroprotectant formed along the kynurenine pathway of tryptophan degradation, is a selective ligand of the GPR35 receptor, which can be found on the surface of various populations of human immune cells. In infections and inflammations, KYNA produces an anti-inflammatory effect through this receptor, by depressing the synthesis of reactive oxygen species and pro-inflammatory cytokines. However, it is still unrecognized whether receptors for kynurenic acid are also localized on immune cells of poikilothermic animals, or whether KYNA is able to affect these cells. The objective of this study has been to determine the effect of different concentrations of kynurenic acid (12.5 μM to 10 mM) on the viability and mitogenic response of lymphocytes and on the activity of phagocytic cells isolated from blood and the spleen of rainbow trout. The results imply low toxicity of kynurenic acid towards fish immune cells, and the proliferative effect observed at the two lowest concentrations of KYNA (12.5 μM and 25 μM) seems indicative of endogenous kynurenic acid being capable of activating fish lymphocytes. Non-toxic, micromole concentrations of KYNA, however, had no influence on the mitogenic response of lymphocytes nor on the activity of phagocytes in rainbow trout under in vitro conditions. There is some likelihood that such an effect could be observed at lower, nanomole concentrations of KYNA.


2006 ◽  
Vol 40 (15) ◽  
pp. 4653-4658 ◽  
Author(s):  
Heather M. Stapleton ◽  
Brian Brazil ◽  
R. David Holbrook ◽  
Carys L. Mitchelmore ◽  
Rae Benedict ◽  
...  

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document