scholarly journals Examining non-linear associations between built environments around workplace and adults’ walking behaviour in Shanghai, China

2022 ◽  
Vol 155 ◽  
pp. 234-246
Author(s):  
Haoran Yang ◽  
Qinran Zhang ◽  
Marco Helbich ◽  
Yi Lu ◽  
Dongsheng He ◽  
...  
Author(s):  
Abdol Aziz Shahraki

This paper reviews the low-resilience problem in many cities, poor designs of cities to cope with disasters, and the need for tolerance of urban constructions. It explores answers concerning the question of how shall we build cities resiliently? The method of this applied research is a multiphase process that considers all physical and socioeconomic elements of a city. It introduces six indicator groups of urban management (M), economy (E), built environments (U), Infrastructures (I), natural environments (N), and health protection (H). The groups include 55 indicators as variables in the mathematical calculations in this paper. This paper builds a mathematical model to maximize the profitability of resilient buildings by optimizing investments in the required projects. The projects will upgrade the firmness and tolerance of cities against nature-based and human-made dangers and risks. There is a linear programming in 55 variables to select optimal solutions from fifty-five factorial alternatives. Then, the programming will develop into non-linear programming. The unique innovation of this paper is its linear programming interpretation by non-linear to give optimal solutions for the problem. Applying the Lagrange function in the Kuhn-Tucker conditions proves the accuracy of the hypothesis that post-COVID urbanization requires maximum resilience. Only in this way, the urban economies will be free of risks. Outcomes in this paper will assist in the pre-planning, design, and building of built environments everywhere resilient and sustainable.


1967 ◽  
Vol 28 ◽  
pp. 105-176
Author(s):  
Robert F. Christy

(Ed. note: The custom in these Symposia has been to have a summary-introductory presentation which lasts about 1 to 1.5 hours, during which discussion from the floor is minor and usually directed at technical clarification. The remainder of the session is then devoted to discussion of the whole subject, oriented around the summary-introduction. The preceding session, I-A, at Nice, followed this pattern. Christy suggested that we might experiment in his presentation with a much more informal approach, allowing considerable discussion of the points raised in the summary-introduction during its presentation, with perhaps the entire morning spent in this way, reserving the afternoon session for discussion only. At Varenna, in the Fourth Symposium, several of the summaryintroductory papers presented from the astronomical viewpoint had been so full of concepts unfamiliar to a number of the aerodynamicists-physicists present, that a major part of the following discussion session had been devoted to simply clarifying concepts and then repeating a considerable amount of what had been summarized. So, always looking for alternatives which help to increase the understanding between the different disciplines by introducing clarification of concept as expeditiously as possible, we tried Christy's suggestion. Thus you will find the pattern of the following different from that in session I-A. I am much indebted to Christy for extensive collaboration in editing the resulting combined presentation and discussion. As always, however, I have taken upon myself the responsibility for the final editing, and so all shortcomings are on my head.)


Optimization ◽  
1975 ◽  
Vol 6 (4) ◽  
pp. 549-559
Author(s):  
L. Gerencsér

1979 ◽  
Author(s):  
George W. Howe ◽  
James H. Dalton ◽  
Maurice J. Elias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document