Optical purity evaluation of the noble metal by the ellipsometric method

2004 ◽  
Vol 455-456 ◽  
pp. 157-160 ◽  
Author(s):  
Peng Zhou ◽  
Song-You Wang ◽  
Jing Li ◽  
Rong-Jun Zhang ◽  
Hai-Yang You ◽  
...  
1984 ◽  
Vol 38 (1) ◽  
pp. 74-78 ◽  
Author(s):  
S. Eberhart ◽  
R. Rothchild

A racemic sample of thiamylal, 5-allyl-5-(1-methylbutyl)-2-thiobarbituric acid, 1, has been shown to exhibit significant enantiomeric shift differences, ΔΔδ, for the CH3- CH proton absorptions when treated with the chiral lanthanide shift reagent, tris[3-(trifluoromethylhydroxy-methylene)- d-camphorato| europium (III), 2, in CDC13 at 28°. For example, at the relatively low molar ratio of 2:1 of 0.181, a value of ΔΔδ of 22 Hz (0.36δ) was observed, which increased to 26 Hz (0.43δ) at a molar ratio of 0.226. These large values, with relatively little lanthanide-induced line-broadening, should make possible the facile determination of optical purity of 1 even with a 60 MHz nmr spectrometer. Parallel studies were run using the achiral shift reagent, tris-(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) europium (III), 3, to confirm peak assignments. The considerable values of ΔΔδ may reflect the “soft base” character of the sulfur atom in 1. Less effective binding by sulfur to the lanthanide atom could lead to coordination by europium on the carbonyl oxygen, relatively close to the chiral center, providing enhanced AA5 values compared to some related compounds. While several other proton absorptions of 1 appear to show some observable ΔΔδ, they are less valuable for optical purity evaluation because of lower intensity, greater multiplicity, or small ΔΔδ value. The relative slopes of the plots of chemical shift, δ, for runs with 2 or 3, are consistent with the full assignment of the proton absorptions of 1 based on expected proximity of the protons to the complexed europium atom. The observed coupling constants of the vinyl hydrogens of 1 further support the assignments.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


2013 ◽  
Vol 51 (2) ◽  
pp. 137-144
Author(s):  
Naesung Lee ◽  
Jeung Choon Goak ◽  
Tae Yang Kim ◽  
Jongwan Jung ◽  
Young-Soo Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document