wet chemical synthesis
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 87)

H-INDEX

43
(FIVE YEARS 9)

Author(s):  
Tehmina Kousar ◽  
Muhammad Aadil ◽  
Sonia Zulfiqar ◽  
Muhammad Farooq Warsi ◽  
Syeda Rabia Ejaz ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Jinzhe Liang ◽  
Yiyao Ge ◽  
Zhen He ◽  
Qinbai Yun ◽  
Guigao Liu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3224
Author(s):  
Dimitrinka Nikolova ◽  
Margarita Gabrovska ◽  
Gergana Raikova ◽  
Emiliya Mladenova ◽  
Daria Vladikova ◽  
...  

Yttrium-doped barium cerate (BCY15) was used as an anode ceramic matrix for synthesis of the Ni-based cermet anode with application in proton-conducting solid oxide fuel cells (pSOFC). The hydrazine wet-chemical synthesis was developed as an alternative low-cost energy-efficient route that promotes ‘in situ’ introduction of metallic Ni particles in the BCY15 matrix. The focus of this study is a detailed comparative characterization of the nickel state in the Ni/BCY15 cermets obtained in two types of medium, aqueous and anhydrous ethylene glycol environment, performed by a combination of XRD, N2 physisorption, SEM, EPR, XPS, and electrochemical impedance spectroscopy. Obtained results on the effect of the working medium show that ethylene glycol ensures active Ni cermet preparation with well-dispersed nanoscale metal Ni particles and provides a strong interaction between hydrazine-originating metallic Ni and cerium from the BCY15 matrix. The metallic Ni phase in the pSOFC anode is more stable during reoxidation compared to the Ni cermet prepared by the commercial mechanical mixing procedure. These factors contribute toward improvement of the anode’s electrochemical performance in pSOFC, enhanced stability, and a lower degradation rate during operation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joonghoon Choi ◽  
Dae Kwon Jin ◽  
Junseok Jeong ◽  
Bong Kyun Kang ◽  
Woo Seok Yang ◽  
...  

AbstractWe report on morphology-controlled remote epitaxy via hydrothermal growth of ZnO micro- and nanostructure crystals on graphene-coated GaN substrate. The morphology control is achieved to grow diverse morphologies of ZnO from nanowire to microdisk by changing additives of wet chemical solution at a fixed nutrient concentration. Although the growth of ZnO is carried out on poly-domain graphene-coated GaN substrate, the direction of hexagonal sidewall facet of ZnO is homogeneous over the whole ZnO-grown area on graphene/GaN because of strong remote epitaxial relation between ZnO and GaN across graphene. Atomic-resolution transmission electron microscopy corroborates the remote epitaxial relation. The non-covalent interface is applied to mechanically lift off the overlayer of ZnO crystals via a thermal release tape. The mechanism of facet-selective morphology control of ZnO is discussed in terms of electrostatic interaction between nutrient solution and facet surface passivated with functional groups derived from the chemical additives.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6809
Author(s):  
Markus Mann ◽  
Michael Küpers ◽  
Grit Häuschen ◽  
Martin Finsterbusch ◽  
Dina Fattakhova-Rohlfing ◽  
...  

Solid electrolyte is the key component in all-solid-state batteries (ASBs). It is required in electrodes to enhance Li-conductivity and can be directly used as a separator. With its high Li-conductivity and chemical stability towards metallic lithium, lithium-stuffed garnet material Li7La3Zr2O12 (LLZO) is considered one of the most promising solid electrolyte materials for high-energy ceramic ASBs. However, in order to obtain high conductivities, rare-earth elements such as tantalum or niobium are used to stabilize the highly conductive cubic phase. This stabilization can also be obtained via high levels of aluminum, reducing the cost of LLZO but also reducing processability and the Li-conductivity. To find the sweet spot for a potential market introduction of garnet-based solid-state batteries, scalable and industrially usable syntheses of LLZO with high processability and good conductivity are indispensable. In this study, four different synthesis methods (solid-state reaction (SSR), solution-assisted solid-state reaction (SASSR), co-precipitation (CP), and spray-drying (SD)) were used and compared for the synthesis of aluminum-substituted LLZO (Al:LLZO, Li6.4Al0.2La3Zr2O12), focusing on electrochemical performance on the one hand and scalability and environmental footprint on the other hand. The synthesis was successful via all four methods, resulting in a Li-ion conductivity of 2.0–3.3 × 10−4 S/cm. By using wet-chemical synthesis methods, the calcination time could be reduced from two calcination steps for 20 h at 850 °C and 1000 °C to only 1 h at 1000 °C for the spray-drying method. We were able to scale the synthesis up to a kg-scale and show the potential of the different synthesis methods for mass production.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shipeng Ning ◽  
Yang Zheng ◽  
Kun Qiao ◽  
Guozheng Li ◽  
Qian Bai ◽  
...  

Abstract Background The use of magnetic nanozymes (NZs) with the ability to synchronize gas therapy through photodynamic and chemotherapy in the treatment of breast cancer has received much attention. Results Hence, in this study, we designed a bovine lactoferrin-coated iron sulfide NZs containing doxorubicin (abbreviated as: FeS-Dox@bLf NZs) by wet-chemical synthesis method. Then, the physicochemical characteristics of synthesized NZs were explored by several methods. Also, the level of Fe2+, H2S and Dox releases from FeS-Dox@Lf NZs. Also, the cytotoxic effects of FeS-Dox@Lf NZs were investigated by cellular assays. After intravenous injections of NZs and laser irradiation, significant effects of FeS-Dox@Lf NZs on mice weight and tumor status were observed. Afterwards, not only the distribution of Dox in the body was examined by fluorescent, but also the time of Fe clearance and the amount of Dox and Fe retention in vital tissues were determined. The findings confirm that FeS-Dox@Lf NZs, in addition to targeted drug distribution in tumor tissue, resulted in superior therapeutic performance compared to free Dox due to reduced Dox side effects in vital tissues, and increased level of free radicals in 4T1 cells. Conclusion Overall, FeS-Dox@Lf NZs with the ability to synchronize chemotherapy and gas therapy raised hopes for more effective treatment of breast cancer. Graphic abstract


2021 ◽  
pp. 132334
Author(s):  
Jianbin Zhou ◽  
Ying Chen ◽  
Zhaoxin Yu ◽  
Mark Bowden ◽  
Quin R. S. Miller ◽  
...  

Carbon ◽  
2021 ◽  
Author(s):  
Yalei Hu ◽  
Qing Cao ◽  
Christof Neumann ◽  
Tibor Lehnert ◽  
Felix Börrnert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document