Field evaluation of the direct detection of multidrug resistant Mycobacterium tuberculosis by nitrate reductase assay on 7H11 agar

Tuberculosis ◽  
2013 ◽  
Vol 93 (3) ◽  
pp. 308-311 ◽  
Author(s):  
Luqman Satti ◽  
Aamer Ikram ◽  
Juan Carlos Palomino ◽  
Anandi Martin ◽  
Farooq Ahmad Khan
2011 ◽  
Vol 106 (3) ◽  
pp. 378-380 ◽  
Author(s):  
Ahmet Yilmaz Coban ◽  
Yeliz Tanriverdi Cayci ◽  
Aydin Deveci ◽  
Alper Akgunes ◽  
Meltem Uzun ◽  
...  

2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Kingsley King-Gee Tam ◽  
Kenneth Siu-Sing Leung ◽  
Gilman Kit-Hang Siu ◽  
Kwok-Chiu Chang ◽  
Samson Sai-Yin Wong ◽  
...  

ABSTRACT An in-house-developed pncA sequencing assay for analysis of pyrazinamide (PZA) resistance was evaluated using 162 archived Mycobacterium tuberculosis complex (MTBC) isolates with phenotypic PZA susceptibility profiles that were well defined by analysis of Bactec MGIT 960 PZA kit and PZase activity data. Preliminary results showed 100% concordance between pncA sequencing and phenotypic PZA drug susceptibility test (DST) results among archived isolates. Also, 637 respiratory specimens were prospectively collected, and 158 were reported as MTBC positive by the Abbott Realtime MTB assay (96.3% sensitivity [95% confidence interval {CI}: 92.2% to 98.7%]; 100% specificity [95% CI: 99.2% to 100.0%]). Genotypic and phenotypic PZA resistance profiles of these 158 MTBC-positive specimens were analyzed by pncA sequencing and Bactec MGIT 960 PZA kit, respectively. For analysis of PZA resistance, pncA sequencing detected pncA mutations in 5/5 (100%) phenotypic PZA-resistant respiratory specimens within 4 working days. No pncA mutations were detected among PZA-susceptible specimens. Combining archived isolates with prospective specimens, 27 were identified as phenotypic PZA resistant with pncA mutation. Among these 27 samples, 6/27 (22.2%) phenotypic PZA-resistant strains carried novel pncA mutations without rpsA and panD mutations. These included 5 with mutations (a deletion [Del] at 383T [Del383T], Del 380 to 390, insertion of A [A Ins] at position 127, A Ins at position 407, and G Ins at position 508) in pncA structural genes and 1 with a mutation (T-12C) at the pncA promoter region. All six of these strains had no or reduced PZase activities, indicating that the novel mutations might confer PZA resistance. Additionally, 25/27 phenotypic PZA-resistant strains were confirmed multidrug-resistant tuberculosis (MDR-TB) strains. As PZA is commonly used in MDR-TB treatment regimens, direct pncA sequencing will rapidly detect PZA resistance and facilitate judicious use of PZA in treating PZA-susceptible MDR-TB.


Sign in / Sign up

Export Citation Format

Share Document