Counter-intuitive collapse of single-layer reticulated domes subject to interior blast loading

2015 ◽  
Vol 96 ◽  
pp. 130-138 ◽  
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Chengqing Wu ◽  
Xudong Zhi
2019 ◽  
Vol 105 ◽  
pp. 266-275
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Lingxin Zhang ◽  
Chengqing Wu ◽  
Xudong Zhi

2020 ◽  
Vol 149 ◽  
pp. 106538 ◽  
Author(s):  
Shaobo Qi ◽  
Xudong Zhi ◽  
Qingwu Shao ◽  
Feng Fan ◽  
Richard G.J. Flay

2012 ◽  
Vol 138 (12) ◽  
pp. 1505-1514 ◽  
Author(s):  
X. D. Zhi ◽  
G. B. Nie ◽  
F. Fan ◽  
S. Z. Shen

2018 ◽  
Vol 132 ◽  
pp. 208-216 ◽  
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Lingxin Zhang ◽  
Chengqing Wu ◽  
Xudong Zhi

Author(s):  
Timothy G. Zhang ◽  
Sikhanda S. Satapathy

Recent wars have highlighted the need to better protect dismounted soldiers against emerging blast and ballistic threats. Current helmets are designed to meet ballistic performance criterion. Therefore, ballistic performance of helmets has received a lot of attention in the literature. However, blast load transfer/mitigation has not been well understood for the helmet/foam pads. The pads between the helmet and head can not only absorb energy, but also produce more comfort to the head. The gap between the helmet and head due to the pads helps prevent or delay the contact between helmet shell and the head. However, the gap between the helmet shell and the head can produce underwash effect, where the pressure can be magnified under blast loading. In this paper, we report a numerical study to investigate the effects of foam pads on the load transmitted to the head under blast loading. The ALE module in the commercial code, LS-DYNA was used to model the interactions between fluid (air) and the structure (helmet/head assembly). The ConWep function was used to apply blast loading to the air surrounding the helmet/head. Since we mainly focus on the load transfer to the head, four major components of the head were modeled: skin, bone, cerebrospinal fluid (CSF) and brain. The foam pads in fielded helmets are made of a soft and a hard layer. We used a single layer with the averaged property to model both of those layers for computational simplicity. Sliding contact was defined between the foam pads and the helmet. A parametric study was carried out to understand the effects of material parameters and thickness of the foam pads.


2016 ◽  
Vol 114 ◽  
pp. 158-170 ◽  
Author(s):  
Jiachuan Yan ◽  
Feng Qin ◽  
Zhenggang Cao ◽  
Feng Fan ◽  
Y.L. Mo

1992 ◽  
Vol 7 (4) ◽  
pp. 265-273 ◽  
Author(s):  
Toshiro Suzuki ◽  
Toshiyuki Ogawa ◽  
Kikuo Ikarashi

In the present paper, the effect of imperfection on the elastic buckling load and mode shapes of externally-loaded single layer reticulated domes is investigated. The types of buckling concerned here are the general buckling, the local (dimple) buckling and the buckling of a member. As to the geometric parameter of a dome, the slenderness factor S is adopted which represents the openness and slenderness of the dome. The maximum value of the imperfection is assumed to be the normal random variable. The buckling loads are computed by the linear and the nonlinear buckling analysis using the finite element method. The statistical values are calculated by the three-points estimates method. The main points of interest are the influence of the shape and the extent of an imperfection on the buckling load.


Sign in / Sign up

Export Citation Format

Share Document