Effect of wave reflection on failure modes of single-layer reticulated domes subjected to interior blast loading

2019 ◽  
Vol 105 ◽  
pp. 266-275
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Lingxin Zhang ◽  
Chengqing Wu ◽  
Xudong Zhi
2018 ◽  
Vol 132 ◽  
pp. 208-216 ◽  
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Lingxin Zhang ◽  
Chengqing Wu ◽  
Xudong Zhi

2014 ◽  
Vol 638-640 ◽  
pp. 58-61
Author(s):  
Chang Wu ◽  
Xiu Li Wang ◽  
Ya Xiong Liang ◽  
Zhan Zhong Yin

As the study of the dynamic response of single-layer reticulated domes under impact, Numerical models for single-layer Kiewitt-6 reticulated domes with sub steel cube column were established by the ANSYS/ LS-DYNA program and a dynamic analysis were carried out. Four failure modes for the reticulated domes were put forward according as the dynamic response and plastic deformation. The parametric analyses on the dynamic response of single-layer reticulated domes with sub steel cube column under the impact loading are carried out, by changing the impact velocity, mass of impact object, size of impact object and impact location.The effects of these parameters on the response mode of the structures are investigated, and the distribution regularity of the response modes of the structures with different parameters is explained.


2008 ◽  
Vol 14 (S1) ◽  
pp. 545-550 ◽  
Author(s):  
Feng Fan ◽  
Duozhi Wang ◽  
Xudong Zhi ◽  
Shizhao Shen

2015 ◽  
Vol 96 ◽  
pp. 130-138 ◽  
Author(s):  
Jialu Ma ◽  
Feng Fan ◽  
Chengqing Wu ◽  
Xudong Zhi

2011 ◽  
Vol 255-260 ◽  
pp. 1760-1764
Author(s):  
Duo Zhi Wang ◽  
Jun Wu Dai ◽  
Feng Fan ◽  
Xu Dong Zhi

FE models of both the single-layer Kiewitt reticulated domes and the impactor were developed incorporating ANSYS/LS-DYNA. Three failure modes for Kiewitt reticulated dome under impact load are discerned. Moreover, Global collapse of structure belongs to the progressive collapse, and is the most serious failure. After this, stress of members, velocity and strain energy of each component are introduced to display the progressive process of collapse. It shows that the dome does not defend impact load as a whole. Each component of structure is impacted and dented in turn. And the collapse enlarges from impact zone to the supports of dome. Furthermore, collapse relates to energy transform among kinetic energy, stain energy and potential energy of structure. Moreover, collapse will continue, if initial kinetic energy and release of potential energy of structure exceed the strain needed.


2020 ◽  
Vol 149 ◽  
pp. 106538 ◽  
Author(s):  
Shaobo Qi ◽  
Xudong Zhi ◽  
Qingwu Shao ◽  
Feng Fan ◽  
Richard G.J. Flay

2012 ◽  
Vol 166-169 ◽  
pp. 1284-1289
Author(s):  
Duo Zhi Wang ◽  
Feng Fan ◽  
Jun Wu Dai ◽  
Xu Dong Zhi ◽  
Zhenggang Cao ◽  
...  

FE models of both the single-layer Kiewitt-8 reticulated domes with a span of 60m and the cylindrical impactor were developed incorporating ANSYS/LS-DYNA. Afterward, fourteen groups impact are simulated by changing the impact position or impacted angle on reticulated dome, and impact velocity and mass of impactor are changed for each group impact. On the basis of large numbers of numerical simulations, characteristics of dynamic response for reticulated dome under impact are shown. And four failure modes (Members slightly damaged, Local collapse of dome, Global collapse of dome, Members shear failed) are presented for single-layer Kiewitt-8 reticulated dome under diverse impact. The distributing of failure modes for the fourteen types impact are different from each other, and the adverse position and angle are summrized.


2012 ◽  
Vol 138 (12) ◽  
pp. 1505-1514 ◽  
Author(s):  
X. D. Zhi ◽  
G. B. Nie ◽  
F. Fan ◽  
S. Z. Shen

Sign in / Sign up

Export Citation Format

Share Document