buckling stress
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 171 ◽  
pp. 108756
Author(s):  
Yue-Ling Long ◽  
Lin Zeng ◽  
Leroy Gardner ◽  
M. Ahmer Wadee

2022 ◽  
Vol 19 (1) ◽  
pp. 972-996
Author(s):  
Xingyou Yao ◽  

<abstract> <p>The distortional buckling is easy to occur for the cold-formed steel (CFS) lipped channel sections with holes. There is no design provision about effective width method (EWM) to predict the distortional buckling strength of CFS lipped channel sections with holes in China. His aim of this paper is to present an proposal of effective width method for the distortional buckling strength of CFS lipped channel sections with holes based on theoretical and numerical analysis on the partially stiffened element and CFS lipped channel section with holes. Firstly, the prediction methods for the distortional buckling stress and distortional buckling coefficients of CFS lipped channel sections with holes were developed based on the energy method and simplified rotation restrained stiffness. The accuracy of the proposed method for distortional buckling stress was verified by using the finite element method. Then the modified EWM was proposed to calculate the distortional buckling strength and the capacity of the interaction buckling of CFS lipped channel sections with holes based on the proposal of distortional buckling coefficient. Finally, comparisons on ultimate capacities of CFS lipped channel sections with holes of the calculated results by using the modified effective width method with 347 experimental results and 1598 numerical results indicated that the proposed EWM is reasonable and has a high accuracy and reliability for predicting the ultimate capacities of CFS lipped channel section with holes. Meanwhile, the predictions by the North America specification are slightly unconservative.</p> </abstract>


2021 ◽  
Vol 16 ◽  
pp. 198-205
Author(s):  
Jacob Nagler

The current paper deals with the problem of the simply supported thin rectangular plate subjected to the intermediate strip in-plane loading. Based on the strain energy method (Fourier ansatz), the critical (minimum value) of buckling stress occurrence was determined in a general form dependent only on the strip thickness, strip location, plate width and stress magnitude. Compatible with the classical columns Euler method it was found that the plate stability is decreased with the increasing of the plate width due to larger induced stresses. Also, strip location relative to the support region was found to influence the buckling (same analogy to the Euler buckling theory; consider the strip as a both sides pressed rod). Additionally, the strip width parameter increase is likely to cause larger buckling stress. Moreover, expressions that includes both axial and transverse loads for different extended cases configurations were also derived and examined based on the strain energy method alongside explanation for possible applications (thin aluminum plate welding). In a general view, it was found that the cases of combined axial and perpendicular loading action are less stabilized than cases where only one kind of loading configuration is participated. Finally, the buckling stress was found to agree qualitatively with the cited literature.


Author(s):  
Abusaleh Naderi

This paper studies buckling problem of square nano-plates under uniform biaxial pressure through using three-dimensional nonlocal elasticity theory. Equations of stability are solved analytically for square nano-plates with simple supports using a Navier-type method. Critical buckling stress is presented for nano square plates with different thickness-length and nonlocal parameter-length ratios. The critical buckling stress is also reported using different local (classical) and nonlocal two-dimensional plate theories constructed essentially based on some simplifying assumptions. Comparison of the results of two-dimensional and three-dimensional theories for both local and nonlocal cases shows that the nonlocal two-dimensional plate theories are not as accurate as the local two-dimensional ones. This issue however reveals importance of the nonlocal three-dimensional solutions. Finally, through comparison of the numerical results with those obtained from molecular dynamic simulations, the value of the nonlocal parameter is calibrated for square graphene sheets. This parameter can be also used for the other nonlocal three-dimensional mechanical analyses of square graphene sheets to find accurate solutions.


Mechanika ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 5-11
Author(s):  
Deividas MARTINAVIČIUS ◽  
Mindaugas AUGONIS

This paper presents experimental and numerical analysis of the composite steel-concrete columns. Three columns are tested experimentally. Overall forty-eight FE models are created. Sixteen different models for every experimental column are analysed to evaluate the influence of the different types of imperfections. It was found that the imperfections reduced the resistance of the composite columns by up to 10 %. Limiting the geometrical imperfection amplitudes to B/200, the steel profile effective cross-sectional area reduction by up to 23 % was observed, while the critical buckling stress was reduced by up to 74 %. Expressions for the calculation of the effective cross-sectional area ratio and critical buckling stress are proposed.


Author(s):  
Akshay Mangal Mahar ◽  
S. Arul Jayachandran

This paper presents a computational methodology to compute the critical buckling stress of built-up cold-formed steel columns joined with discrete fasteners. The fasteners are modeled as three-dimensional beam elements, and their effect is integrated into the spline finite strip framework, evolving the compound strip methodology. Although this technique has been presented in the literature, this paper presents yet another robust framework for the buckling load evaluation of compound cold-formed steel columns with arbitrarily located fasteners. The proposed framework is applied to study the effect of fasteners on the formation of local, distortional, and global buckling modes of built-up section and a comparison is drawn with the buckling behavior of a single section. In this study, the proposed formulations are also used to get insights into the stability behavior of single-span and multi-span compound cold-formed steel columns in the presence of (i) fasteners with varied spacings with respect to span and (ii) the presence of the additional restraining system such as wall panels. For different buckling modes, a significant increment in buckling stress for a built-up section from a single section is observed when the fastener spacing is kept less than the critical buckling half-wavelength of the respective buckling modes. The study on the effect of wall panels shows that in comparison to unsheathed wall studs, the sheathed wall studs that produce additional constraints lead to the elimination of the global buckling deformations. The proposed formulations are simple, yet rigorous and have been validated using finite element-based numerical results.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jiaxing Ma ◽  
Tao Wang ◽  
Yinhui Wang ◽  
Kikuo Ikarashi

Numerical analyses and theoretic analyses are presented to study the elastic buckling of H-section beam web under combined bending and shear force. Results show that the buckling stress of a single web with clamped edges gives a good agreement with the buckling stress of an H-section beam web when the local buckling of the beam is dominated by the web buckling. Based on theoretic analyses, a parametric study is conducted to simplify the calculation of buckling coefficients. The parameters involved are clarified first, and the improved equations for the buckling coefficient and buckling stress are suggested. By applying the proposed method, the web buckling slenderness ratio is defined. It is verified that the web buckling slenderness ratio has a strong correlation with the normalized ultimate strength of H-section beams when the buckling of the beams is dominated by web buckling. Finally, a design equation is proposed for the ultimate strength of H-section beams.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 582 ◽  
Author(s):  
Mahdieh Shahmardani ◽  
Per Ståhle ◽  
Md Shafiqul Islam ◽  
Sharon Kao-Walter

In thin notched sheets under tensile loading, wrinkling appears on the sheet surface, specifically around the cracked area. This is due to local buckling and compression stresses near the crack surfaces. This study aims to numerically study the buckling behavior of a thin sheet with a central crack under tension. A numerical model of a notched sheet under tensile loading is developed using the finite element method, which considers both material and geometrical nonlinearity. To overcome the convergence problem caused by the small thickness-to-length/width ratio and to stimulate the buckling, an imperfection is defined as a small perturbation in the numerical model. Both elastic and elasto-plastic behavior are applied, and the influence of them is studied on the critical buckling stress and the post-buckling behavior of the notched sheet. Numerical results for both elastic and elasto-plastic behavior reflect that very small perturbations need more energy for the activation of buckling mode, and a higher buckling mode is predominant. The influences of different parameters, including Poisson’s ratio, yield limit, crack length-to-sheet-width ratio, and the sheet aspect ratio are also evaluated with a focus on the critical buckling stress and the buckling mode shape. With increase in Poisson’s ratio. First, the critical buckling stress reduces and then remains constant. A higher yield limit results in increases in the critical buckling stress, and no change in the buckling mode shape while adopting various crack length-to-sheet-width ratios, and the sheet aspect ratio changes the buckling mode shape.


Sign in / Sign up

Export Citation Format

Share Document