Design for local buckling behaviour of welded high strength steel I-sections under bending

2022 ◽  
Vol 172 ◽  
pp. 108792
Author(s):  
Shuxian Chen ◽  
Han Fang ◽  
Jun-zhi Liu ◽  
Tak-Ming Chan
2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2022 ◽  
Vol 171 ◽  
pp. 108677
Author(s):  
Bing Li ◽  
Chao Cheng ◽  
Zhimin Song ◽  
Xianlei Cao ◽  
Zhengyi Kong

2019 ◽  
Vol 194 ◽  
pp. 196-206 ◽  
Author(s):  
Xianlei Cao ◽  
Lixiang Gu ◽  
Zhengyi Kong ◽  
Geng Zhao ◽  
Min Wang ◽  
...  

2013 ◽  
Vol 284-287 ◽  
pp. 1390-1395
Author(s):  
Geon Ho Hong ◽  
Won Ki Kim ◽  
In Rak Choi ◽  
Kyung Soo Chung

Concrete filled steel tube has been consistently used in tall buildings as it represents excellent structural performance and economical efficiency compared with other structural systems. The use of high strength steel in concrete filled steel tube can reduce the column size and increase the effective space in the buildings. But, the limit of width-to-thickness ratio to prevent local buckling is an obstacle to applying the high strength steel as it considerably decrease following to the strength increase. This paper addresses the effect of steel plate slenderness limit on the compression behavior in 800 MPa Grade steel. Four short column specimens were tested under axial compression. Main test variables were width-to-thickness ratio and shape of section. Test results were analyzed in the viewpoint of local buckling strength, yield strength, maximum strength and plastic deformation capacity of specimens. The experimental results showed that all specimens exceeded the maximum strength of calculated value by design code and represented similar deformation capacity regardless of width-to-thickness ratio. So, the limit of width-to-thickness ratio in high strength steel could be amended less strict.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present paper examines the structural behavior of elongated steel hollow cylinders, referred to as tubes or pipes, subjected to large cyclic bending, through a rigorous finite element simulation. The bent cylinders exhibit cross-sectional distortion, in the form of ovalization, combined with excessive plastic deformations. Those deformations grow under repeated loading and may lead to structural instability in the form of local buckling (wrinkling) and, eventually, failure of the loaded member. The study focuses on relatively thick-walled seamless cylindrical members made of high-strength steel, which exhibit local buckling in the plastic range of the steel material. The analysis is conducted using advanced nonlinear finite element models capable of describing both geometrical and material nonlinearities. A cyclic plasticity model that adopts the “bounding surface” concept is employed. The material model is calibrated through special-purpose material testing, and implemented within ABAQUS, using a user-subroutine. The finite element model is validated by comparison with two experiments on high-strength steel tubular members. Special emphasis is given on the increase of ovalization and the gradual development of small-amplitude initial wrinkles with repeated loading cycles. A parametric numerical study is conducted, aimed at determining the effects of initial wrinkles on plastic buckling performance.


Sign in / Sign up

Export Citation Format

Share Document