Immunization with plasmid DNA encoding a truncated, secreted form of the bovine viral diarrhea virus E2 protein elicits strong humoral and cellular immune responses

Vaccine ◽  
2005 ◽  
Vol 23 (45) ◽  
pp. 5252-5262 ◽  
Author(s):  
Rong Liang ◽  
Jan V. van den Hurk ◽  
Chunfu Zheng ◽  
Hong Yu ◽  
Reno A. Pontarollo ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 350
Author(s):  
Zhanhui Wang ◽  
Mengyao Liu ◽  
Haoran Zhao ◽  
Pengpeng Wang ◽  
Wenge Ma ◽  
...  

Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle. Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to their safety and strong ability to elicit robust immune responses. In this study, we developed a strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs were spherical particles with the diameters of about 50 nm. Mice immunized with 15 μg of VLPs adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific humoral and cellular immune responses in mice, showing a promising potential of developing BVDV-VLP-based vaccines for the prevention of BVDV infections.


2006 ◽  
Vol 87 (10) ◽  
pp. 2971-2982 ◽  
Author(s):  
Rong Liang ◽  
Jan V. van den Hurk ◽  
Lorne A. Babiuk ◽  
Sylvia van Drunen Littel-van den Hurk

The objective of this study was to develop an optimal vaccination strategy for Bovine viral diarrhea virus (BVDV). The E2 protein of BVDV plays a major protective role against BVDV infection. In order to be able to compare DNA, protein and DNA prime–protein boost regimens, a plasmid was constructed encoding a secreted form of the NADL strain E2 protein (pMASIA-tPAsΔE2). Furthermore, a pure secreted recombinant ΔE2 (rΔE2) protein was produced. The rΔE2 protein was formulated with a combination of Emulsigen and CpG oligodeoxynucleotide. Groups of calves were immunized with pMASIA-tPAsΔE2 or with rΔE2, or first with pMASIA-tPAsΔE2 and then with rΔE2. To evaluate the protection against BVDV, calves were challenged with BVDV strain NY-1 after the last immunization. Although all immunized calves developed humoral and cellular immune responses, the antibody responses in the DNA prime–protein boost group were stronger than those elicited by either the DNA vaccine or the protein vaccine. In particular, E2-specific antibody titres were enhanced significantly after boosting the ΔE2 DNA-primed calves with rΔE2 protein. Moreover, protection against BVDV challenge was obtained in the calves treated with the DNA prime–protein boost vaccination regimen, as shown by a significant reduction in weight loss, viral excretion and lymphopenia, compared with the unvaccinated calves and the animals immunized with the DNA or protein only. These results demonstrate the advantage of a DNA prime–protein boost vaccination approach in an outbred species.


Sign in / Sign up

Export Citation Format

Share Document