diarrhea virus
Recently Published Documents


TOTAL DOCUMENTS

2546
(FIVE YEARS 673)

H-INDEX

74
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Dan Yi ◽  
Changzheng Ji ◽  
Tao Wu ◽  
Manli Wang ◽  
...  

Porcine epidemic diarrhea virus (PEDV) has reemerged as the main pathogen of piglets due to its high mutation feature. Monolaurin (ML) is a natural compound with a wide range of antibacterial and antiviral activities. However, the role of ML in PEDV infection is still unknown. This study aimed to evaluate the effect of ML on the growth performance, intestinal function, virus replication and cytokine response in piglets infected with PEDV, and to reveal the mechanism through proteomics analysis. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 days before PEDV infection. Results showed that although there was no significant effect on the growth performance of piglets, ML administration alleviated the diarrhea caused by PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Proteomics analyses showed that 38 proteins were differentially expressed between PEDV and ML+PEDV groups and were significantly enriched in the interferon-related pathways. This suggests ML could promote the restoration of homeostasis by regulating the interferon pathway. Overall, the present study demonstrated ML could confer a protective effect against PEDV infection in piglets and may be developed as a drug or feed additive to prevent and control PEDV disease.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Techit Thavorasak ◽  
Monrat Chulanetra ◽  
Kittirat Glab-ampai ◽  
Karsidete Teeranitayatarn ◽  
Thaweesak Songserm ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.


2022 ◽  
Vol 354 (11-12) ◽  
pp. 36-39
Author(s):  
V. V. Mikhailova ◽  
T. P. Lobova ◽  
M. S. Shishkina ◽  
A. N. Skvortsova

Relevance. The reproductive health of dairy cows is one of the top priorities in dairy farming. Viral diarrhea, a disease of mucous membranes in cattle, is one of the causes of impaired reproductive function on farms. The disease is widespread throughout the world and causes significant economic damage, which consists of a decrease in productivity, lack of offspring, impaired reproductive function of the broodstock, costs of treatment and specific prevention. The viral diarrhea virus has an immunosuppressive effect. Diagnosis is complicated by a “blurry” clinical picture due to the association of the virus with other respiratory-intestinal viruses and the addition of a secondary bacterial infection, as well as the presence of a persistent form of infection. The diagnosis requires the analysis of clinical and epizootic data, pathological changes and a combination of several methods of laboratory diagnostics. An important link in the prevention and recovery of herds is the conduct of epizootic monitoring and analysis of its results.Methodology. The assessment of the epizootic situation for viral diarrhea, a disease of mucous membranes in cattle in the Russian Federation for 2020, was carried out based on the results of the analysis of information obtained from annual reports provided by state veterinary laboratories in the FSBI CNMVL in the form of 4-vet (annual).Results. Based on the results of the epizootic monitoring, it can be concluded that the viral diarrhea virus is widely circulating in the livestock farms of the Russian Federation. In 2020, positive results were recorded in all federal districts of the Russian Federation (in 33 subjects), except for the Far Eastern Federal District. The most difficult epizootic situation is in the North Caucasus Federal District and the Central Federal District (38% and 29% of the total number of positive results, respectively).


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Susanne Koethe ◽  
Patricia König ◽  
Kerstin Wernike ◽  
Jana Schulz ◽  
Ilona Reimann ◽  
...  

Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems.


2022 ◽  
Author(s):  
Jinghua Cheng ◽  
Jie Tao ◽  
Benqiang Li ◽  
Ying Shi ◽  
Huili liu

Abstract Background: From the 1078 diarrhea stools tested in our survey from 2017 to 2020 in local area of China, PEDV was the key pathogen which was closely related to the death of diarrhea piglets. Besides, co-infection of PEDV-positive samples with BVDV reached 17.24%. Although BVDV infection in swine is typically subclinical, the effect of PEDV and BVDV coinfection on disease severity and the potential molecular mechanism of coinfection with these two viruses remain unknown.Methods: In this study, we developed a model of coinfection with porcine epidemic diarrhea virus (PEDV) and bovine viral diarrhea virus (BVDV) in PK15 cells, and a tandem mass tag (TMT) combined with LC–MS/MS proteomic approach was used to identify differential protein expression profiles. Additionally, we take the drug experiments to explore the inflammatory response induced by PEDV or BVDV mono- or coinfection.Results: A total of 1094, 1538, and 1482 differentially expressed proteins (DEPs) were identified upon PEDV monoinfection, BVDV monoinfection and PEDV/BVDV coinfection, respectively. KEGG pathway analysis revealed that PEDV and BVDV coinfection leaded to a highly significantly enrichment of inflammatory bowel disease (IBD) pathway. In addition, the NF-κB signaling pathway was more intensively activated by PEDV and BVDV coinfection, which induced higher production of inflammatory cytokines, than PEDV or BVDV monoinfection.Conclusions: Our study indicated that cattle pathogens might play synergistic roles in the pathogenesis of porcine diarrhea disease, which might also improve our understanding of the pathogenesis of multiple infections in diarrhea disease.


Author(s):  
Liting Zhu ◽  
Shiguo Liu ◽  
Zewen Zhuo ◽  
Yanxi Lin ◽  
Yanni Zhang ◽  
...  

2022 ◽  
Vol 52 (8) ◽  
Author(s):  
Misael Enrique Oviedo Pastrana ◽  
Erly Carrascal-Triana ◽  
Matiluz Doria Ramos ◽  
Diego Ortiz Ortega

ABSTRACT: The bovine respiratory disease complex causes sizable losses for livestock producers. Its presentation involves the interaction among multiple viral and bacterial pathogens. Viral agents include: bovine viral diarrhea virus (BVDV), bovine alphaherpesvírus 1 (BoHV-1), bovine parainfluenza virus (bPI3v) and bovine respiratory syncytial virus (BRSV); so far, these viruses have been little studied in the buffalo population. This study is aimed to assess the presence of these viruses in buffalo populations of the department of Córdoba, Colombia. A transversal study was conducted upon assessment of 37 farms and 861 buffaloes. Seroprevalence in animals were as follows: 21.7% (BVDV), 51.5% (BoHV-1), 73.6% (bPI3v) and 58.9% (BSRV), while seroprevalence in farms stood at: 94.6% (BVDV), 100% (BoHV-1), 100% (bPI3v) and 100% (BSRV). Conversely, the multiple seropositivity in buffaloes or past coinfection of viral agents amounted to 23.3% for a single virus, 31.8% for two viruses, 29.4% for three viruses and 7.1% for four viruses; only 8.4% of buffaloes were seronegative for four viruses. This is the first regional epidemiological study in the buffalo populations of Colombia and the results showed viral circulation and multiple seropositivity in animals; in addition, the high prevalence found pose a concerning epidemiological threat.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Dianzhong Zheng ◽  
Xiaona Wang ◽  
Ning Ju ◽  
Zhaorui Wang ◽  
Ling Sui ◽  
...  

Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.


2021 ◽  
Author(s):  
Leng Dongze ◽  
Shinji Yamada ◽  
Yusuke Chiba ◽  
Syuji Yoneyama ◽  
Yusuke Sakai ◽  
...  

Abstract Bovine viral diarrhea virus (BVDV) causes substantial economic losses in the livestock industry worldwide. Plasmids encoding the BVDV E2 protein are potential DNA vaccines against BVDV, but their immunogenicity has been insufficient. Here, we investigated the adjuvant effect of CD40 and CD63 on the immune responses to a BVDV E2 DNA vaccine in a mouse model. We constructed pUMVC4a-based plasmids encoding the BVDV E2 protein (pE2), mouse CD40 (pCD40), or mouse CD63 (pCD63). Protein expression by each plasmid was confirmed through Western blot analysis and immunofluorescence staining of cultured cell lines. BALB/c mice were immunized intradermally twice with pE2 in combination with, or without, pCD40 or pCD63, with 3 weeks between the two doses. pE2 with pCD40 induced significantly higher neutralizing antibody titers against BVDV than pE2 alone. Furthermore, pE2 with pCD40 or pCD63 induced significantly increased lymphocyte proliferation and IFN-γ production in response to BVDV ex vivo, compared with E2 alone. These results suggest that a plasmid encoding CD40 or CD63 can be used as an adjuvant to enhance immune responses to DNA vaccines against BVDV.


Sign in / Sign up

Export Citation Format

Share Document