Shock front interaction and dynamics of laterally colliding laser-produced plasmas

Vacuum ◽  
2022 ◽  
pp. 110872
Author(s):  
Shilpa S ◽  
Pramod Gopinath
Keyword(s):  
Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki V. Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

AbstractIn gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here, we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading edge of the interplanetary CME (or ICME) that was driving the shock. While < 10 MeV protons were detected already at the shock front, the higher-energy (> 30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.


1981 ◽  
Vol 74 (12) ◽  
pp. 6864-6866 ◽  
Author(s):  
Paul Harris ◽  
Henri Nöel Presles
Keyword(s):  

1971 ◽  
Vol 76 (13) ◽  
pp. 3178-3178
Author(s):  
A. Egidi ◽  
V. Formisiano ◽  
F. Palmiotto ◽  
P. Saraceno ◽  
G. Moreno
Keyword(s):  

AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075214
Author(s):  
Xiaodong Xue ◽  
Xiaoqiong Wen ◽  
Yuantian Yang ◽  
Liru Wang ◽  
Xue Wang

2021 ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

&lt;p&gt;In gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading-edge of the interplanetary CME (or ICME) that was driving the shock. While &lt;10 MeV protons were detected already at the shock front, the higher-energy (&gt;30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document