Peculiarities of evolution of single-component gas molecule distribution in relative velocities in the shock front

1995 ◽  
Vol 30 (4) ◽  
pp. 540-544
Author(s):  
S. V. Kulikov ◽  
O. N. Ternovaya ◽  
S. L. Chereshnev
Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


2017 ◽  
Author(s):  
John G. Collier ◽  
V.V. Wadekar
Keyword(s):  

Author(s):  
Irina Bystrova ◽  
E. Danil'chuk ◽  
Boris Podkopaev

The problem of constructing a diagnostic model for a network S consisting of a number of digital automata is considered, provided that the diagnostic models of all network components are known. It is assumed that these models are given by systems of logical equations, and the errors to be detected are localized in any but a single component of the network.


ROBOT ◽  
2010 ◽  
Vol 32 (1) ◽  
pp. 41-47
Author(s):  
Lining SUN ◽  
Weida LI ◽  
Zhenyu JIANG ◽  
Wei GUO ◽  
Mantian LI

2021 ◽  
pp. 2101295
Author(s):  
Siying Li ◽  
Xin Yuan ◽  
Qilin Zhang ◽  
Bin Li ◽  
Yuxiang Li ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


2021 ◽  
Vol 53 (1) ◽  
pp. 107-132
Author(s):  
Tomasz Rychlik ◽  
Fabio Spizzichino

AbstractWe study the distributions of component and system lifetimes under the time-homogeneous load-sharing model, where the multivariate conditional hazard rates of working components depend only on the set of failed components, and not on their failure moments or the time elapsed from the start of system operation. Then we analyze its time-heterogeneous extension, in which the distributions of consecutive failure times, single component lifetimes, and system lifetimes coincide with mixtures of distributions of generalized order statistics. Finally we focus on some specific forms of the time-nonhomogeneous load-sharing model.


2021 ◽  
Vol 9 (9) ◽  
pp. 3257-3263
Author(s):  
Jianwei Liu ◽  
Zhimin Ma ◽  
Zewei Li ◽  
Yan Liu ◽  
Xiaohua Fu ◽  
...  

Two isomers pDCzPyCN and oDCzPyCN are designed and synthesized. Amazingly, oDCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.


Sign in / Sign up

Export Citation Format

Share Document