Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells

2017 ◽  
Vol 191 ◽  
pp. 44-50
Author(s):  
Abubakar Garba ◽  
Delphine D. Acar ◽  
Inge D.M. Roukaerts ◽  
Lowiese M.B. Desmarets ◽  
Bert Devriendt ◽  
...  
Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Abstract Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3722-3730 ◽  
Author(s):  
CD Porter ◽  
MH Parkar ◽  
MK Collins ◽  
RJ Levinsky ◽  
C Kinnon

The primary immunodeficiencies are attractive candidates for the development of gene therapy approaches based on the transduction of hematopoietic cells. We have constructed a high-titer recombinant retrovirus for expression of gp91-phox, deficiencies of which cause the X-linked form of chronic granulomatous disease (X-CGD). We have used this vector to transduce human bone marrow, using either unfractionated mononuclear cells or purified CD34+ cells as targets and evaluated several infection protocols. Efficient gene transfer to progenitors and long-term culture-initiating cells (LTC-IC) was obtained for each target population. Importantly for potential clinical application, this could be achieved without the use of exogenous cytokines or polybrene. Progenitors representing each of the lineages detectable in vitro were transduced at equal efficiencies. The vector was shown partially to restore gp91-phox deficiency and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in transduced cells derived from X- CGD patients. These data demonstrate that it is possible to transduce primitive human hematopoietic cells efficiently and reconstitute NADPH oxidase.


2008 ◽  
Vol 180 ◽  
pp. S209
Author(s):  
Maria Carfi’ ◽  
Maria Carfi’ ◽  
Cristina Croera ◽  
Gerard Bowe ◽  
Raymond Pieters ◽  
...  

1990 ◽  
Vol 61 (5) ◽  
pp. 267-270 ◽  
Author(s):  
R. Schiró ◽  
L. H. Coutinho ◽  
A. Will ◽  
J. Chang ◽  
N. G. Testa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document