scholarly journals Differential Maintenance of Primitive Human SCID-Repopulating Cells, Clonogenic Progenitors, and Long-Term Culture-Initiating Cells After Incubation on Human Bone Marrow Stromal Cells

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Abstract Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


2017 ◽  
Vol 191 ◽  
pp. 44-50
Author(s):  
Abubakar Garba ◽  
Delphine D. Acar ◽  
Inge D.M. Roukaerts ◽  
Lowiese M.B. Desmarets ◽  
Bert Devriendt ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1351-1351
Author(s):  
Suzan Imren ◽  
Guy Sauvageau ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract Expanding human hematopoietic stem cells (HSCs) in vitro is a major goal in clinical hematology but remains a major challenge due to the potent differentiating activity of known cytokines. We recently demonstrated that a NUP98-HOX fusion gene containing only the homeodomain (hd) of HOXA10 (NUP98-HOXA10hd) is a powerful stimulator of murine HSC expansion in vitro - causing >1000-fold net HSC increases in 10 days (Sekulovic et al, ISEH 2005). To investigate the proliferative effect of NUP98-HOXA10hd on primitive human hematopoietic cells, highly enriched CD34+ cord blood cells were prestimulated overnight and exposed to self-inactivating MNDUSNUP98-HOXA10hd pgkGFP or control pgkGFP lentiviruses for 6h. The gene transfer efficiency into CD34+ cells determined 4 days after infection was 56 ± 5% for NUP98-HOXA10hd and 66 ± 5% for the GFP control. GFP+ cells were sorted on day 5 and then maintained for another 5 days in serum-free cultures containing Flt3-ligand, Steel factor, IL-3, IL-6 and G-CSF. An aliquot of each was then plated into “primary” colony-forming cell (CFC) assay cultures. No difference was detected in either the numbers or the types of colonies generated in these primary CFC assays of the 10-day cultured cells from the NUP98-HOXA10hd and control arms. However, when these primary CFC assays were replated into secondary CFC assays, the number of colonies obtained from the NUP98-HOXA10hd-transduced cells was 5-fold higher as compared to the GFP-control transduced cells and, upon replating into tertiary CFC assays, this difference increased to over a 100-fold. To determine the effect of NUP98-HOXA10hd on more primitive hematopoietic cells, 104 day-10 GFP+ cells were co-cultured on mouse fibroblast feeders engineered to produce human SF, IL-3 and G-SCF. At the end of 6 weeks, 13-fold more cells were recovered from the cultures initiated with NUP98-HOXA10hd-transduced cells than from the control cultures (474,000 ± 190,000 vs 37,000 ± 16,000, 3 experiments). CFC outputs were also greatly enhanced (21-fold more CFC than in the controls cultures, range=20–80, 3 experiments). Moreover, the proportion of progenitors in the assays of the cultures initiated with NUP98-HOXA10hd cells that were multi-lineage (CFU-GEMM) was >10-fold higher as compared to the CFCs obtained from the control cultures (8 ± 3% vs 0.7 ± 0.7%). When this experiment was repeated using limiting dilutions of initial day-10 cells, the frequency of NUP98-HOXA10hd-transduced cells able to generate CFCs another 6 weeks later was 10-fold higher as compared to the day-10 GFP control-transduced cells. These findings document an unprecedented potency of NUP98-HOXA10hd for stimulating the ex-vivo expansion of very primitive pluripotent human hematopoietic cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1651-1651
Author(s):  
Aarthi Shenoy ◽  
Loretta Pfannes ◽  
Francois Wilhelm ◽  
Manoj Maniar ◽  
Neal Young ◽  
...  

Abstract CD34 positive cells from patients with trisomy 8 myelodysplastic syndrome (MDS) have pronounced expression of early apoptotic markers compared to normal hematopoietic cells. However, trisomy 8 clones persist in patients with bone marrow failure and expand following immunosuppression (Sloand EM et al; Blood2005; 106(3):841). We have demonstrated up-regulation of c-myc, survivin, and CD1 in CD34 cells of patients with trisomy 8 (Sloand et al; Blood2007; 109(6):2399). Employing siRNA mediated knockdown of the anti-apoptotic protein survivin, we demonstrated a decrease in trisomy 8 cell growth and postulated that increased Cyclin D1 caused the upregulation of survivin resulting in resistance of these cells to apoptosis. Using fluorescent in situ hybridization (FISH) we showed that the novel styryl sulfone, ON 01910.Na (Vedula MS et al; European Journal of Medicinal Chemistry2003;38:811), inhibits cyclin D1 accumulation and is selectively toxic to trisomy 8 cells while promoting maturation of diploid cells. Flow cytometry of cultured cells demonstrated increased proportions of mature CD15 positive myeloid cells and decreased number of immature CD33+ cells or CD34+ blasts (Sloand EM et al; Blood2007;110:822). These encouraging in vitro data led to a phase I/II trial of ON 01910.Na in MDS patients with refractory anemia with excess blasts who had IPSS =/> int-2. This study was designed to assess the safety, and activity of escalating doses of ON 01910.Na (800 mg/m2/day × 3 days, 800 mg/m2/day × 5 days, 1500 mg/m2/day × 5 days, 1800 mg/m2/day × 5 days every 2 weeks) in MDS patients. To date five MDS patients have been treated with ON 01910.Na for 4 to 16 weeks in the first two dose cohorts. Two patients had isolated trisomy 8, two had complex cytogenetic abnormalities including trisomy 8 in all aneuploid cells, and one had monosomy 7. Three and five day infusions were well tolerated. Pharmakokinetic analysis showed that the half life of the drug is 1.3 ± 0.5 hours without signs of drug accumulation. Four of five patients demonstrated a rapid and significant decrease in the number of peripheral blasts and aneuploid cells after 4 weeks of therapy (see below), concomitantly with increases in neutrophil and/or platelet counts in four patients. All four patients exhibiting a biological effect of drug treatment had trisomy 8 in their aneuploid clone prior to therapy. One monosomy 7 patient, previously refractory to EPO became responsive to Darbopoietin and another trisomy 8 patient became platelet-transfusion independent. In this early safety trial, ON 01910.Na demonstrates efficacy at early timepoints with respect to improved cytopenias and decreased blast counts. Continued enrollment and long term follow-up will further detail clinical efficacy and impact on the long term prognosis of high risk MDS patients treat with this drug. Figure Figure


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 350-350
Author(s):  
Ceri H Jones ◽  
Thet Thet Lin ◽  
Elisabeth Jane Walsby ◽  
Guy E Pratt ◽  
Christopher Fegan ◽  
...  

Abstract Telomere length is a prognostic factor in Chronic Lymphocytic Leukemia (CLL) with short telomere length a powerful predictor of early time to first treatment and reduced overall survival. However, little is known about telomere dynamics through the course of an individual patient's disease. Our recent longitudinal analysis of CLL B-cell telomere length revealed very little dynamic change within individual patients with a mean erosion rate of -52bp/year (p=0.05). In marked contrast, T-cells derived from the same patients showed a significantly higher mean erosion rate of -119bp/year (p=0.02) with a median follow up time of 69 months. Here we present data derived from long-term in-vitro co-culture of peripheral blood from CLL patients coupled with temporal analysis of their telomere length dynamics. We utilized a multi-cellular co-culture system, comprised of autologous T-cells and CD40L-expressing mouse fibroblasts, to maintain CLL cells in long-term culture. Patient-derived peripheral blood mononuclear cells (n=16) were maintained for a median of 70 days (range 54-154); samples were analyzed every two weeks for tumor cell telomere length and evidence of proliferation. We used fluorescence-activated cell sorting (FACS) to sort populations of CD19+CD5+ CLL B-cells and CD3+ T-cells from each of the cultures. We then performed high-resolution single telomere length analysis (STELA) on these sorted subsets of cells and analyzed their telomere dynamics over this extended time course. Analysis of CLL B-cells from these cultures revealed significantly increased Ki-67+ at day 14 when compared to day 0 (p<0.001) and this was evident for the duration of the cultures. Despite sustained tumor cell proliferation, we observed no significant difference in the CLL B-cell telomere length with a mean TL at the start of 4.5kb vs 4.3kb at the end (p=0.14). The presence of T-cells was shown to be critical for the maintenance of the long-term cultures in two ways. Firstly, cultures that were treated with 4μM fludarabine showed a catastrophic reduction in T-cells (p=0.01), which was associated with a significantly shorter duration of survival of CLL B-cells when compared to untreated controls (median 17.5 days (range 7-70); p<0.001). Secondly, it proved impossible to maintain T-cell depleted, purified CLL B-cells, in long-term culture. T-cells isolated from the long-term cultures showed evidence of proliferation with Ki-67+ again being increased at day 14 in comparison to baseline (p=0.003). Furthermore, T-cells derived from these cultures showed a significant alteration in subset composition over time with a decrease in the numbers of naive CD4+ (p=0.05) and CD8+ (p=0.02) T-cells and a corresponding increase in effector memory (p=0.2) and terminally differentiated effector memory (EMRA) subsets (p=0.07). In conclusion, this study demonstrates that we have developed a robust, long-term culture method for the maintenance of CLL cells. Despite evidence of sustained CLL proliferation, CLL B-cells showed little telomere length erosion during long-term co-culture and this is compatible with our recent ex-vivo analysis, which showed that the telomere length of CLL B-cells are remarkably stable with a mean erosion rate of only -52bp/year. In both ex-vivo and in-vitro analysis, telomere erosion correlated with starting telomere length (r2=0.14, p=0.04 and r2=0.3 p=0.03 respectively). Taken together, our in-vitro and ex-vivo data imply that the radically short telomeres observed in some CLL patients are not the result of increased proliferation of the malignant B-cell, but rather the mutagenic event occurs in a B-cell which already has short telomeres. Furthermore, our novel long-term culture model has reinforced the vital role of T-cells in sustaining CLL B-cells viability and proliferation in-vitro. Given the consistent skewing of the T-cell pool towards a memory phenotype it seems unlikely that this is driven in-vitro by cognate TCR antigen recognition but rather a cytokine-mediated response. Disclosures Fegan: Gilead Sciences: Honoraria; Roche: Honoraria; AbbVie: Honoraria.


2019 ◽  
Author(s):  
P. Zhang ◽  
C. Zhang ◽  
J. Han ◽  
J. Gao ◽  
W. Zhao ◽  
...  

AbstractIn bone marrow, hematopoietic stem cells (HSCs) and multiple hematopoietic progenitor cells (HPCs) cooperate to differentiate and replenish blood and immune cells. It has long been recognized bone marrow niche parameters interact with hematopoietic stem and progenitor cells (HSPCs) and additional work is required to study niche physical signals controlling cell behavior. Here we presented that important biophysical signals, stiffness and dimensionality, regulating expansion of bone marrow HSPCs. Mice bone marrow derived progenitor cells were cultured in collagen I hydrogel in vitro. We found stiffer 3D matrix promoted the expansion of lineage negative (Lin−) progenitor cells and Lin−Sca-1+c-kit+ (LSK) HSPCs compared to softer hydrogel. Compared with cells cultured in 2D environment, 3D embedded construct had significant advantage on HSPCs expansion, accompanied by increases on myeloid and lymphoid lineage fractions. Bright changes on gene expression were subsequently discovered. According to these data, we concluded that culture matrix dimensionality is an important factor to regulate the behavior of subpopulations in hematopoietic cell pool, which should be considered in attempts to illuminate HSCs fate decision in vitro.Statement of SignificanceWe would like to submit the enclosed manuscript entitled "Importance of Niche-dimensionality in Regulating the Bone Marrow Hematopoietic Cells Pool", which we wish to be considered for publication in Biophysical Journal. Studies about the interaction between HSCs and factors provided by their microenvironment is largely focus on pure perspective of biology. But biophysical factors affecting HSC fate and behavior needs to be further explore. Herein we found ex vivo culture dimensionality affected HSPC expansion. Cell surface marker detection and mRNA expression analysis predicted the changes on myeloid and lymphoid lineage fractions. We hope niche physical signals which we identified will be considered to design HSC biomimetic niches in clinical applications. And we believe that our study will make it interesting to general readers. We deeply appreciate your consideration of our manuscript, and we look forward to receiving comments from the reviewers.


2021 ◽  
Author(s):  
Chenghai Li

Mesenchymal stem cell/stromal cells (MSCs) can differentiate into a variety of cell types, including osteocytes, adipocytes and chondrocytes. MSCs are present in the multiple types of adult tissue, such as bone marrow, adipose tissue, and various neonatal birth-associated tissues. Given their self-renewal and differentiation potential, immunomodulatory and paracrine properties, and lacking major histocompatibility complex (MHC) class II molecules, MSCs have attracted much attention for stem cell-based translational medicine research. Due to a very low frequency in different types of tissue, MSCs can be isolated and expanded in vitro to derive sufficient cell numbers prior to the clinical applications. In this chapter, the methodology to obtain primary bone marrow-derived MSCs as well as their in vitro culture expansion will be described. To assess the functional properties, differentiation assays, including osteogenesis, chondrogenesis and adipogenesis, 3-D culture of MSCs and co-culture of MSCs and tumor cells are also provided. Finally, the long-term culture associated alterations of MSCs, such as replicative senescence and spontaneous transformation, will be discussed for better understanding of the use of MSCs at the early stages for safe and effective cell-based therapy.


2020 ◽  
Vol 8 (4) ◽  
pp. 139-145
Author(s):  
Rut Bryl ◽  
Claudia Dompe ◽  
Maurycy Jankowski ◽  
Katarzyna Stefańska ◽  
Afsaneh Golkar Narenji ◽  
...  

AbstractDue to its availability and accessibility, adipose tissue has been the subject of various studies in many different medical fields and is believed to be a useful source of stem cells. The ability of ASCs to differentiate towards different cell lineages, with possibility of directing this differentiation, increases their possible clinical applications, and they have been widely employed in multiple therapies and treatment of different pathologies. However, a deeper understanding of the molecular mechanisms underlying the ASCs osteoblastic and chondrocyte differentiation may lead to novel applications treating a multitude of different bone-related diseases through techniques more likely meeting worldwide consensus. In this study, the RT-qPCR method was used to determine the changes in expression of ASC specific markers (CD105, CD73, CD14, CD34, CD90 and CD45) before and after long-term (14-day) in vitro cultures. To confirm the identity of the investigated cells, flow cytometry was used to evaluate the presence of positive (CD44, CD90) and negative (CD45, CD34) ASC markers. Overall, the results of the PCR analysis showed a significant change in expression of most of the marker genes, indicating significant changes in the cultured cells caused by their long-term culture, potentially altering their original stem-like characteristics.Running title: ASC marker expression during long-term in vitro culture


Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 135-139 ◽  
Author(s):  
I Slaper-Cortenbach ◽  
R Ploemacher ◽  
B Lowenberg

The factors determining the predominantly erythroid direction of human fetal liver hematopoiesis are unknown. We compared the capacities of human fetal liver and bone marrow stromas to sustain fetal and adult hematopoiesis in long-term cultures. In various marrow-fetal liver combinations of stroma and recharge, the maintenance of erythroid (BFU- e) and myeloid (CFU-GM) precursors in the nonadherent phase was determined. The morphology of the fetal liver nucleated cells during culture was also examined. This study shows that fetal liver stromas efficiently support fetal BFU-e for 6 to 7 weeks in vitro. Bone marrow stromas were not able to maintain fetal BFU-e beyond 4 weeks. Significant numbers of marrow BFU-e were not sustained in vitro on either source of stroma. On the other hand, the stroma layers of fetal liver and marrow origin were equally effective in maintaining fetal CFU- GM and adult CFU-GM in long-term culture. These findings show that the human embryonic liver stroma is a preferential site for stimulating fetal erythropoiesis. They do not demonstrate differences in stroma function to explain the relative paucity of myelopoiesis in the fetal liver.


Sign in / Sign up

Export Citation Format

Share Document