Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: A diverse pathogen with limited clonality

2008 ◽  
Vol 127 (1-2) ◽  
pp. 63-72 ◽  
Author(s):  
Désirée Mayor ◽  
Jörg Jores ◽  
Bożena M. Korczak ◽  
Peter Kuhnert
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Hui Zhang ◽  
Yuanyuan Wang ◽  
Lu Gao ◽  
Yan Wang ◽  
Rong Wei

Abstract Background Between 2018 and 2020, 989 clinical specimens from pigs showing clinical signs of a variety of swine diseases in 27 provinces in China were sampled and submitted for further testing. Nested PCR targeting the 16S rRNA gene of Mycoplasma hyopneumoniae and subsequent sequencing were used to analyse these specimens. Mycoplasma hyopneumoniae-positive samples were assayed by multilocus sequence typing (MLST). The aim of the study was to reveal the distribution of M. hyopneumoniae and determine the genotypes of M. hyopneumoniae in pig herds in China based on MLST. Results Among these 989 samples, 199 samples were M. hyopneumoniae-positive. The M. hyopneumoniae positivity rate was 7.2% (35/494) in 2018, 18.4% (38/207) in 2019, and 43.8% (126/288) in 2020. In total, 47 samples were successfully assayed by MLST. Sixteen new M. hyopneumoniae sequence types from 9 provinces were recorded in the present study. Conclusions This is the first report on sample positivity rates and molecular typing results for M. hyopneumoniae in swine herds in China. MLST has revealed high genotype diversity among M. hyopneumoniae from different provinces of China.


2005 ◽  
Vol 147 (9) ◽  
pp. 373-379 ◽  
Author(s):  
F. Zeeh ◽  
P. Kuhnert ◽  
R. Miserez ◽  
M. G. Doherr ◽  
W. Zimmermann

2019 ◽  
Vol 26 (10) ◽  
pp. 776-784
Author(s):  
Rui Yang ◽  
Yu Tao ◽  
Gaojian Li ◽  
Jian Chen ◽  
Jianhong Shu ◽  
...  

Background:Porcine circovirus and Mycoplasma hyopneumoniae can cause respiratory diseases in pigs, which cause serious economic loss in the worldwide pig industry. Currently, these infections are mainly prevented and controlled by vaccination. The new vaccines on the market are mainly composed of subunits and inactivated vaccines but usually have lower antigenicity than traditional live vaccines. Thus, there is an increasing need to develop new adjuvants that can cause rapid and long-lasting immunity to enhance the antigenic efficacy for vaccines. Studies have shown that meningococcal porin PorB can act as a ligand to combine with Toll-like receptors to activate the production of immunological projections and act as a vaccine immunological adjuvant.Objective:In this article, we expressed and purified the recombinant PorB protein and verified its immunogenicity against porcine circovirus type 2 and Mycoplasma hyopneumoniae genetically engineered vaccine.Methods:In this article, we used prokaryotic expression to express and purify recombinant PorB protein, four different concentrations of PorB protein, Freund's adjuvant with two genetically engineered vaccines were combined with subcutaneous immunization of mice.Results:Our study shows that the appropriate dose of the recombinant protein PorB can enhance the levels of humoral and cellular responses induced by two genetically engineered vaccines in a short period of time in mice. The PorB adjuvant group may cause statistically higher antibody titers for both genetically engineered vaccines compared to Freund's commercial adjuvant (P<0.001).Conclusion:The recombinant protein PorB may be a good candidate adjuvant for improving the protective effect of vaccines against porcine circovirus type 2 and Mycoplasma hyopneumoniae, and the protein can be used for future practical applications.


Sign in / Sign up

Export Citation Format

Share Document