scholarly journals Structure–functional analysis of human immunodeficiency virus type 1 (HIV-1) Vpr: role of leucine residues on Vpr-mediated transactivation and virus replication

Virology ◽  
2004 ◽  
Vol 328 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Dineshkumar Thotala ◽  
Elizabeth A. Schafer ◽  
Biswanath Majumder ◽  
Michelle L. Janket ◽  
Marc Wagner ◽  
...  
1996 ◽  
Vol 40 (11) ◽  
pp. 827-835 ◽  
Author(s):  
Yukako Ohshiro ◽  
Tsutomu Murakami ◽  
Kazuhiro Matsuda ◽  
Kiyoshi Nishioka ◽  
Keiichi Yoshida ◽  
...  

2000 ◽  
Vol 74 (21) ◽  
pp. 10256-10259 ◽  
Author(s):  
Stephen D. Lawn ◽  
Salvatore T. Butera

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) bearing HLA-DR in its envelope was detected in plasma from all patients with chronic HIV-1 infection (n = 16) and was present at higher levels in patients with active tuberculosis coinfection (n = 6). Intriguingly, however, HLA-DR was not detectable in HIV-1 from patients during primary viremia (n = 6), suggesting the possibility of virus replication in less-activated cells.


2008 ◽  
Vol 89 (10) ◽  
pp. 2605-2610 ◽  
Author(s):  
Reza Nazari ◽  
Sadhna Joshi

This study examined whether insertion of a mobile group II intron into infectious human immunodeficiency virus type 1 (HIV-1) provirus DNA could inhibit virus replication. Introns targeted against two sites within the integrase-coding region were used. The intron-inserted HIV-1 provirus DNA clones were isolated and tested for virus replication. Similar amounts of HIV-1 RNA, Gag protein and progeny virus were produced from HIV-1 provirus DNA and intron-inserted HIV-1 provirus DNA. However, when the progeny virus was tested for its infectivity, although the group II intron-inserted HIV-1 RNA was packaged and reverse-transcribed, the dsDNA failed to integrate, as expected in the absence of a functional integrase, and virus replication was aborted. These results demonstrate that group II introns can confer ‘complete’ inhibition of HIV-1 replication at the intended step and should be further exploited for HIV-1 gene therapy and other targeted genetic repairs.


2008 ◽  
Vol 82 (24) ◽  
pp. 12094-12103 ◽  
Author(s):  
Catherine A. Blish ◽  
Ozge C. Dogan ◽  
Nina R. Derby ◽  
Minh-An Nguyen ◽  
Bhavna Chohan ◽  
...  

ABSTRACT Superinfection by a second human immunodeficiency virus type 1 (HIV-1) strain indicates that gaps in protective immunity occur during natural infection. To define the role of HIV-1-specific neutralizing antibodies (NAbs) in this setting, we examined NAb responses in 6 women who became superinfected between ∼1 to 5 years following initial infection compared to 18 women with similar risk factors who did not. Although superinfected individuals had less NAb breadth than matched controls at ∼1 year postinfection, no significant differences in the breadth or potency of NAb responses were observed just prior to the second infection. In fact, four of the six subjects had relatively broad and potent NAb responses prior to infection by the second strain. To more specifically examine the specificity of the NAbs against the superinfecting virus, these variants were cloned from five of the six individuals. The superinfecting variants did not appear to be inherently neutralization resistant, as measured against a pool of plasma from unrelated HIV-infected individuals. Moreover, the superinfected individuals were able to mount autologous NAb responses to these variants following reinfection. In addition, most superinfected individuals had NAbs that could neutralize their second viral strains prior to their reinfection, suggesting that the level of NAbs elicited during natural infection was not sufficient to block infection. These data indicate that preventing infection by vaccination will likely require broader and more potent NAb responses than those found in HIV-1-infected individuals.


2009 ◽  
Vol 83 (9) ◽  
pp. 4195-4204 ◽  
Author(s):  
Jian-Hua Wang ◽  
Constance Kwas ◽  
Li Wu

ABSTRACT Dendritic cells (DCs) play a critical role in cell-to-cell-mediated transmission of human immunodeficiency virus type 1 (HIV-1). Interactions between intercellular adhesion molecules (ICAMs) and their ligands facilitate DC-T-cell contact. The interaction between ICAM-1 on DCs and leukocyte function-associated molecule 1 (LFA-1) on CD4+ T cells has been proposed to be important for DC-mediated HIV-1 transmission. Given that DCs and T cells express multiple ICAMs and binding ligands, the relative importance of ICAMs in DC-mediated HIV-1 transmission remains to be defined. Here, we examine the role of ICAM-1, -2, and -3 in DC-mediated HIV-1 transmission to various types of target cells including primary CD4+ T cells. The expression levels of ICAMs and their ligands on immature and mature DCs and various types of HIV-1 target cells were measured by flow cytometry. Blocking ICAM-1 in DCs with specific monoclonal antibodies and small interfering RNA impaired DC-mediated HIV-1 transmission. DC-mediated viral transmission was significantly inhibited when both ICAM-1 on DCs and LFA-1 on CD4+ T cells were blocked. However, blockade of ICAM-1 on target cells did not significantly inhibit DC-mediated HIV-1 transmission. Ectopic expression and antibody blocking suggest that DC-mediated HIV-1 transmission to primary CD4+ T cells is independent of ICAM-2 and ICAM-3. Taken together, our data clarified the role of ICAMs in DC-mediated HIV-1 transmission to CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document