scholarly journals Redoxal, an inhibitor of de novo pyrimidine biosynthesis, augments APOBEC3G antiviral activity against human immunodeficiency virus type 1

Virology ◽  
2015 ◽  
Vol 484 ◽  
pp. 276-287 ◽  
Author(s):  
Erez Pery ◽  
Ann Sheehy ◽  
N. Miranda Nebane ◽  
Vikas Misra ◽  
Marie K. Mankowski ◽  
...  
Virology ◽  
2000 ◽  
Vol 278 (2) ◽  
pp. 412-422 ◽  
Author(s):  
Loyda Ylisastigui ◽  
Youssef Bakri ◽  
Saaïd Amzazi ◽  
Jean Claude Gluckman ◽  
Abdelaziz Benjouad

2001 ◽  
Vol 75 (14) ◽  
pp. 6572-6583 ◽  
Author(s):  
Anuja Ghorpade ◽  
Raisa Persidskaia ◽  
Radhika Suryadevara ◽  
Myhanh Che ◽  
Xiao Juan Liu ◽  
...  

ABSTRACT The pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is mediated mainly by mononuclear phagocyte (MP) secretory products and their interactions with neural cells. Viral infection and MP immune activation may affect leukocyte entry into the brain. One factor that influences central nervous system (CNS) monocyte migration is matrix metalloproteinases (MMPs). In the CNS, MMPs are synthesized by resident glial cells and affect the integrity of the neuropil extracellular matrix (ECM). To ascertain how MMPs influence HAD pathogenesis, we studied their secretion following MP differentiation, viral infection, and cellular activation. HIV-1-infected and/or immune-activated monocyte-derived macrophages (MDM) and human fetal microglia were examined for production of MMP-1, -2, -3, and -9. MMP expression increased significantly with MP differentiation. Microglia secreted high levels of MMPs de novo that were further elevated following CD40 ligand-mediated cell activation. Surprisingly, HIV-1 infection of MDM led to the down-regulation of MMP-9. In encephalitic brain tissue, MMPs were expressed within perivascular and parenchymal MP, multinucleated giant cells, and microglial nodules. These data suggest that MMP production in MP is dependent on cell type, differentiation, activation, and/or viral infection. Regulation of MMP expression by these factors may contribute to neuropil ECM degradation and leukocyte migration during HAD.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


1991 ◽  
Vol 39 (6) ◽  
pp. 1638-1640 ◽  
Author(s):  
Yoshio INOUYE ◽  
Yoshiki TOKUTAKE ◽  
Tetsuya YOSHIDA ◽  
Akihiro YAMAMOTO ◽  
Toshihiro YAMASE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document