scholarly journals Mononuclear Phagocyte Differentiation, Activation, and Viral Infection Regulate Matrix Metalloproteinase Expression: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

2001 ◽  
Vol 75 (14) ◽  
pp. 6572-6583 ◽  
Author(s):  
Anuja Ghorpade ◽  
Raisa Persidskaia ◽  
Radhika Suryadevara ◽  
Myhanh Che ◽  
Xiao Juan Liu ◽  
...  

ABSTRACT The pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is mediated mainly by mononuclear phagocyte (MP) secretory products and their interactions with neural cells. Viral infection and MP immune activation may affect leukocyte entry into the brain. One factor that influences central nervous system (CNS) monocyte migration is matrix metalloproteinases (MMPs). In the CNS, MMPs are synthesized by resident glial cells and affect the integrity of the neuropil extracellular matrix (ECM). To ascertain how MMPs influence HAD pathogenesis, we studied their secretion following MP differentiation, viral infection, and cellular activation. HIV-1-infected and/or immune-activated monocyte-derived macrophages (MDM) and human fetal microglia were examined for production of MMP-1, -2, -3, and -9. MMP expression increased significantly with MP differentiation. Microglia secreted high levels of MMPs de novo that were further elevated following CD40 ligand-mediated cell activation. Surprisingly, HIV-1 infection of MDM led to the down-regulation of MMP-9. In encephalitic brain tissue, MMPs were expressed within perivascular and parenchymal MP, multinucleated giant cells, and microglial nodules. These data suggest that MMP production in MP is dependent on cell type, differentiation, activation, and/or viral infection. Regulation of MMP expression by these factors may contribute to neuropil ECM degradation and leukocyte migration during HAD.

1998 ◽  
Vol 72 (4) ◽  
pp. 3351-3361 ◽  
Author(s):  
Anuja Ghorpade ◽  
Meng Qi Xia ◽  
Bradley T. Hyman ◽  
Yuri Persidsky ◽  
Adeline Nukuna ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection in mononuclear phagocyte lineage cells (monocytes, macrophages, and microglia) is a critical component in the pathogenesis of viral infection. Viral replication in macrophages serves as a reservoir, a site of dissemination, and an instigator for neurological sequelae during HIV-1 disease. Recent studies demonstrated that chemokine receptors are necessary coreceptors for HIV-1 entry which determine viral tropism for different cell types. To investigate the relative contribution of the β-chemokine receptors CCR3 and CCR5 to viral infection of mononuclear phagocytes we utilized a panel of macrophage-tropic HIV-1 strains (from blood and brain tissue) to infect highly purified populations of monocytes and microglia. Antibodies to CD4 (OKT4A) abrogated HIV-1 infection. The β chemokines and antibodies to CCR3 failed to affect viral infection of both macrophage cell types. Antibodies to CCR5 (3A9) prevented monocyte infection but only slowed HIV replication in microglia. Thus, CCR5, not CCR3, is an essential receptor for HIV-1 infection of monocytes. Microglia express both CCR5 and CCR3, but antibodies to them fail to inhibit viral entry, suggesting the presence of other chemokine receptors for infection of these cells. These studies demonstrate the importance of mononuclear phagocyte heterogeneity in establishing HIV-1 infection and persistence.


2004 ◽  
Vol 78 (5) ◽  
pp. 2586-2590 ◽  
Author(s):  
Udaykumar Ranga ◽  
Raj Shankarappa ◽  
Nagadenahalli B. Siddappa ◽  
Lakshmi Ramakrishna ◽  
Ramalingam Nagendran ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain, and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions, we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these, cysteine (at position 31) was highly (>99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions, in contrast, the SC mutant was defective in both. Therefore, the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence, this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.


2003 ◽  
Vol 47 (3) ◽  
pp. 889-896 ◽  
Author(s):  
Cristina Parolin ◽  
Barbara Gatto ◽  
Claudia Del Vecchio ◽  
Teresa Pecere ◽  
Enzo Tramontano ◽  
...  

ABSTRACT A 6-aminoquinolone derivative, WM5, which bears a methyl substituent at the N-1 position and a 4-(2-pyridyl)-1-piperazine moiety at position 7 of the bicyclic quinolone ring system, was previously shown to exhibit potent activity against replication of human immunodeficiency virus type 1 (HIV-1) in de novo-infected human lymphoblastoid cells (V. Cecchetti et al., J. Med. Chem. 43:3799-3802, 2000). In this report, we further investigated WM5's mechanism of antiviral activity. WM5 inhibited HIV-1 replication in acutely infected cells as well as in chronically infected cells. The 50% inhibitory concentrations were 0.60 ± 0.06 and 0.85 ± 0.05 μM, respectively. When the effects of WM5 on different steps of the virus life cycle were analyzed, the reverse transcriptase activity and the integrase and protease activities were not impaired. By using a transient trans-complementation assay to examine the activity of WM5 on the replicative potential of HIV-1 in a single round of infection, a sustained inhibition of Tat-mediated long terminal repeat (LTR)-driven transcription (>80% of controls) was obtained in the presence of 5 μM WM5. Interestingly, the aminoquinolone was found to efficiently complex TAR RNA, with a dissociation constant in the nanomolar range (19 ± 0.6 nM). These data indicate that WM5 is a promising lead compound for the development of a new class of HIV-1 transcription inhibitors characterized by recognition of viral RNA target(s).


1996 ◽  
Vol 40 (9) ◽  
pp. 2034-2038 ◽  
Author(s):  
L Tondelli ◽  
F P Colonna ◽  
A Garbesi ◽  
S Zanella ◽  
M E Marongiu ◽  
...  

Among a series of unmodified phosphodiester (PO)-oligodeoxynucleotides (PO-ODNs) complementary to some of the human immunodeficiency virus type 1 (HIV-1) regulatory genes, several PO-ODN sequences complementary to the vpr gene (PO-ODNs-a-vpr, where a-vpr is the antisense vpr sequence) emerged as potent inhibitors (at concentrations of 0.8 to 3.3 microM) of HIV-1 multiplication in de novo infected MT-4 cells, while they showed no cytotoxicity for uninfected cells at concentrations up to 100 microM. Unlike phosphorothioate counterparts, PO-ODN-a-vpr sequences were not inhibitory to HIV-2 multiplication in de novo infected C8166 cells and neither prevented the fusion between chronically infected and bystander CD4+ cells nor inhibited the activity of the HIV-1 reverse transcriptase in enzyme assays. Moreover, they were not inhibitory to HIV-1 multiplication in chronically infected cells. Delayed addition experiments showed that PO-ODNs-a-vpr inhibit an event in the HIV-1 replication cycle following adsorption to the host cell, but preceding reverse transcription. Structure-activity relationship studies indicated that the antiviral activity of the test PO-ODN-a-vpr sequences is not related to an antisense mechanism but to the presence, within the active sequences, of contiguous guanine residues. Physical characterization of the test PO-ODNs suggested that the active structure is a tetramer stabilized by G quartets (i.e., four G residues connected by eight hydrogen bonds).


1994 ◽  
Vol 70 (6) ◽  
Author(s):  
Marisa Márcia Mussi-Pinhata ◽  
Maria Célia C. Ferez ◽  
Dimas T. Covas ◽  
Geraldo Duarte ◽  
Márcia L. Isaac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document