mononuclear phagocyte
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 90)

H-INDEX

69
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Benjamin Stewart ◽  
Martin Fergie ◽  
Matthew Young ◽  
Claire Jones ◽  
Ashwin Sachdeva ◽  
...  

Abstract Although a lymph node infiltrated by classic Hodgkin lymphoma is mostly composed of non-neoplastic immune cells, the malignant Hodgkin Reed-Sternberg cells (HRSC) successfully suppress an anti-tumor immune response, to create a cancer-permissive microenvironment. Accordingly, unleashing the dormant immune cells, for example by checkpoint inhibition, has been a central focus of recent therapeutic advances for this disease. Here, we profiled the global immune cell composition of normal and diseased lymph nodes by single-cell RNA sequencing, as a basis for interrogating the immediate vicinity of HRSC, first regionally and then at cellular resolution. Our analyses revealed specific immune cells and functional states associated with HRSC. Most prominently, we discovered a non-random spatial association of immunoregulatory mononuclear phagocytes positioned around HRSC, which express the immune checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO1. These findings provide a basis for rational targeting and activation of the anti-tumor immune response in classic Hodgkin lymphoma.


2021 ◽  
Author(s):  
Catherine Potts ◽  
Julia Schearer ◽  
Dominic Bair ◽  
Becky Ayler ◽  
Jordan Love ◽  
...  

AbstractMononuclear phagocytes (MNPs) such as dendritic cells and macrophages perform key sentinel functions in mucosal tissues and are responsible for inducing and maintaining adaptive immune responses to mucosal pathogens. Positioning of MNPs at the mucosal epithelial interface facilitates their access to luminally-derived antigens and may regulate MNP function through soluble mediators or surface receptor interactions. Therefore, accurately quantifying the distribution of MNPs within mucosal tissues as well as their spatial relationship with other cells is important to infer functional cellular interactions in health and disease. In this study, we developed and validated a MATLAB-based tissue cytometry platform, termed “MNP mapping application” (MNPmApp), that performs high throughput analyses of MNP density and distribution in the gastrointestinal mucosa based on digital multicolor fluorescence microscopy images and that integrates a Monte Carlo modeling feature to assess randomness of MNP distribution. MNPmApp identified MNPs in tissue sections of the human gastric mucosa with a specificity of 98.3 ± 1.6% and a sensitivity of 76.4 ± 15.1%. Monte Carlo modeling revealed that mean MNP-MNP distances were significantly lower than anticipated based on random cell placement, whereas MNP-epithelial distances did not significantly differ from those of randomly placed cells. Interestingly, H. pylori infection had no significant impact on MNP density or distribution with regards to MNP-epithelial distances or MNP-MNP distances in gastric tissue. Overall, our analysis demonstrates that MNPmApp is a useful tool for unbiased quantitation of MNPs and their distribution at mucosal sites.


Author(s):  
Furqan Muhammad Iqbal ◽  
Florence Delie

Presently, nano-crystallization is widely accepted for increasing the solubility and biological barrier permeability of poorly soluble drugs. It improves the bioavailability of therapeutic agents, increasing the effectiveness for treating diseased conditions, and could be safely administered by oral, parenteral, or transdermal routes. Drug nanocrystals are drug particles coated with a thin polymer layer to enhance their stability and could be decorated with ligands for active targeting. In addition, nanocrystals, due to their morphological properties, improve cell internalization. Therefore, passive targeting by high cellular uptake and retention in the mononuclear phagocyte system (MPS) may be expected. Drug nanocrystals are formulated by either top-down or bottom-up methods and could be scaled up for industrial manufacturing. In the past few decades, nanocrystal formulation has been increasingly studied to overcome the limitations of BCS Class II and IV chemotherapeutic agents. The study of cytotoxic effects of drug formulation on cell lines gives an insight for estimating its in-vivo biodistribution. This review highlights the role of morphology, stabilizer, and ligand conjugation on drug targeting and cellular uptake in cancer cells, as well as a brief discussion on nanocrystal production.


2021 ◽  
Author(s):  
Xi Zhang ◽  
Camille Moore ◽  
Laura Harmacek ◽  
Joanne Domenico ◽  
Vittobai Rangaraj ◽  
...  

Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the cystic fibrosis transmembrane conductance regulator gene (CFTR). Converging lines of evidence suggest that CF carriers with only one defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, but the molecular mechanisms underpinning this effect remain unknown. Here, we performed transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control PBMCs or THP-1 cells incubated with the plasma of these subjects. Transcriptomic analyses revealed suppression of cytokine-enriched immune-related genes (IL-1, CXCL8, CREM) implicating lipopolysaccharide tolerance in innate immune cells (monocytes) of CF probands and their parents and in the control innate immune cells incubated with proband or parent plasma. These data suggest that not only a homozygous but also a heterozygous CFTR mutation can modulate the immune/inflammatory system. This conclusion is further supported by the findings of lower numbers of circulating monocytes in CF probands and their parents compared to healthy controls, the abundance of mononuclear phagocyte subsets (macrophages, monocytes, and activated dendritic cells) which correlated with Pseudomonas aeruginosa infection, lung disease severity, and CF progression in the probands. This study provides insight into demonstrated CFTR-related innate immune dysfunction in individuals with CF and carriers of a CFTR mutation that may serve as a target for personalized therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Stefanie Steiger ◽  
Lingyan Fei ◽  
Chenyu Li ◽  
Chongxu Shi ◽  
...  

Post-ischemic acute kidney injury and disease (AKI/AKD) involve acute tubular necrosis and irreversible nephron loss. Mononuclear phagocytes including conventional dendritic cells (cDCs) are present during different phases of injury and repair, but the functional contribution of this subset remains controversial. Transcription factor interferon regulatory factor 8 (IRF8) is required for the development of type I conventional dendritic cells (cDC1s) lineage and helps to define distinct cDC1 subsets. We identified one distinct subset among mononuclear phagocyte subsets according to the expression patterns of CD11b and CD11c in healthy kidney and lymphoid organs, of which IRF8 was significantly expressed in the CD11blowCD11chigh subset that mainly comprised cDC1s. Next, we applied a Irf8-deficient mouse line (Irf8fl/flClec9acre mice) to specifically target Clec9a-expressing cDC1s in vivo. During post-ischemic AKI/AKD, these mice lacked cDC1s in the kidney without affecting cDC2s. The absence of cDC1s mildly aggravated the loss of living primary tubule and decline of kidney function, which was associated with decreased anti-inflammatory Tregs-related immune responses, but increased T helper type 1 (TH1)-related and pro-inflammatory cytokines, infiltrating neutrophils and acute tubular cell death, while we also observed a reduced number of cytotoxic CD8+ T cells in the kidney when cDC1s were absent. Together, our data show that IRF8 is indispensable for kidney cDC1s. Kidney cDC1s mildly protect against post-ischemic AKI/AKD, probably via suppressing tissue inflammation and damage, which implies an immunoregulatory role for cDC1s.


2021 ◽  
Author(s):  
Can Jin ◽  
Shucheng Zhang ◽  
Linlin Wu ◽  
Bohan Li ◽  
Meimei Shi ◽  
...  

Abstract Rationale: It is unclear whether removing the danger-associated molecular patterns (DAMPs) of gut lymph (GL) in the rats of gut ischemia-reperfusion injury (GIRI) model may reduce the distant organ lung injury.Objective: To determine whether oXiris gut lymph purification (GLP) may remove the DAMPs of GL in the rats’ model of acute lung injury (ALI) caused by GIRI.Methods: The experimental rats were divided into four groups: Sham group, GIRI group, GIRI + gut lymph drainage (GLD) group, and GIRI + GLP group. After successful modeling, the lung tissue samples of rats in each group were taken for hematoxylin-eosin (HE) staining and detection of expression levels of apoptotic indexes. The level of DAMPs was detected in blood and lymph. We observed its microstructure of type II alveolar epithelial cells (AECⅡ), and detected the expression level of apoptosis indexes.Measurements and Main Results: GIRI-induced destruction of alveolar structure, thickened alveolar walls, inflammatory cell infiltration emerged in the GIRI group, HMGB-1 and IL-6 levels significantly increased, and HSP70 and IL-10 levels reduced in lymph and serum. Compared with GIRI group, the lung tissue damage in GIRI + GLP group significantly improved, the expression level of HMGB-1 and IL-6 in the lymph and serum reduced, and HSP70 and IL-10 increased. The organelle structure of AECII in GIRI + GLP group was significantly improved compared with the GIRI group. Conclusions: oXiris GLP blocks the key link between DAMPs and mononuclear phagocyte system to inhibit inflammation and cell apoptosis, thereby reducing ALI induced by GIRI.


2021 ◽  
Author(s):  
Michelle Stakenborg ◽  
Saeed Abdurahiman ◽  
Veronica De Simone ◽  
Gera Goverse ◽  
Nathalie Stakenborg ◽  
...  

Objective: Monocyte-derived macrophages (Mϕs) are crucial regulators during muscularis inflammation. However, it is unclear which microenvironmental factors are responsible for monocyte recruitment and neurotrophic Mϕ differentiation in this paradigm. Here, we investigate Mϕ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue protective Mϕs. Design: Single cell RNA sequencing was performed on immune cells from the muscularis of wild-type and CCR2-/- mice at different timepoints after muscularis inflammation. CX3CR1GFP/+ and CX3CR1CreERT2 R26YFP mice were analyzed by flow cytometry and immunofluorescence. The transcriptome of enteric glial cells (EGCs) was investigated using PLPCreERT2 Rpl22HA mice. In addition, we assessed the effect of supernatant from neurosphere-derived EGCs on monocyte differentiation based on the expression of pro- and anti-inflammatory factors. Results: Muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mϕs subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mϕs, which were both derived from CCR2+ monocytes. Interestingly, we found that EGCs were able to sense damage to the muscularis to stimulate monocyte recruitment and differentiation towards pro-resolving Mϕs via CCL2 and CSF1, respectively. Conclusion: Our study provides a comprehensive insight into pro-resolving Mϕ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mϕs, thereby highlighting pro-resolving Mϕ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Linhe Wang ◽  
Jie Li ◽  
Shuai He ◽  
Yang Liu ◽  
Haitian Chen ◽  
...  

AbstractIschemia–reperfusion injury (IRI) remains the major reason for impaired donor graft function and increased mortality post-liver transplantation. The mechanism of IRI involves multiple pathophysiological processes and numerous types of cells. However, a systematic and comprehensive single-cell transcriptional profile of intrahepatic cells during liver transplantation is still unclear. We performed a single-cell transcriptome analysis of 14,313 cells from liver tissues collected from pre-procurement, at the end of preservation and 2 h post-reperfusion. We made detailed annotations of mononuclear phagocyte, endothelial cell, NK/T, B and plasma cell clusters, and we described the dynamic changes of the transcriptome of these clusters during IRI and the interaction between mononuclear phagocyte clusters and other cell clusters. In addition, we found that TNFAIP3 interacting protein 3 (TNIP3), specifically and highly expressed in Kupffer cell clusters post-reperfusion, may have a protective effect on IRI. In summary, our study provides the first dynamic transcriptome map of intrahepatic cell clusters during liver transplantation at single-cell resolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinwen Lin ◽  
Hongyi Wang ◽  
Chenxi Liu ◽  
Ao Cheng ◽  
Qingwei Deng ◽  
...  

Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.


Sign in / Sign up

Export Citation Format

Share Document