scholarly journals The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection

2016 ◽  
Vol 222 ◽  
pp. 106-112 ◽  
Author(s):  
Insun Kook ◽  
Clinton Jones
2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Tiffany Russell ◽  
Ben Bleasdale ◽  
Michael Hollinshead ◽  
Gillian Elliott

ABSTRACTDespite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment.IMPORTANCEThe alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.


2001 ◽  
Vol 82 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Melissa Inman ◽  
Yange Zhang ◽  
Vicki Geiser ◽  
Clinton Jones

The bICP0 protein encoded by bovine herpesvirus 1 (BHV-1) is believed to activate transcription and consequently productive infection. Expression of full-length bICP0 protein is toxic in transiently transfected mouse neuroblastoma cells (neuro-2A) in the absence of other viral genes. However, bICP0 does not appear to directly induce apoptosis. Although bICP0 is believed to be functionally similar to the herpes simplex virus type 1-encoded ICP0, the only protein domain that is well conserved is a C3HC4 zinc ring finger located near the N terminus of both proteins. Site-specific mutagenesis of the zinc ring finger of bICP0 demonstrated that it was important for inducing aggregated chromatin structures in transfected cells and toxicity. The zinc ring finger was also required for stimulating productive infection in bovine cells and for trans-activating the thymidine kinase (TK) promoter of herpes simplex virus type 1. Deletion of amino acids spanning 356–677 of bICP0 altered subcellular localization of bICP0 and prevented trans-activation of the TK promoter. However, this deletion did not prevent trans-activation of the viral genome. Taken together, these studies indicated that bICP0 has several functional domains, including the zinc ring finger, which stimulate productive infection and influence cell survival.


Sign in / Sign up

Export Citation Format

Share Document