Artificial neural network (ANN) modeling for the prediction of odor emission rates from landfill working surface

2022 ◽  
Vol 138 ◽  
pp. 158-171
Author(s):  
Ankun Xu ◽  
Rong Li ◽  
Huimin Chang ◽  
Yingjie Xu ◽  
Xiang Li ◽  
...  
2018 ◽  
Vol 65 ◽  
pp. 05004
Author(s):  
Augustine Chioma Affam ◽  
Malay Chaudhuri ◽  
Chee Chung Wong ◽  
Chee Swee Wong

The study examined artificial neural network (ANN) modeling for the prediction of chlorpyrifos, cypermethrin and chlorothalonil pesticides degradation by the FeGAC/H2O2 process. The operating condition was the optimum condition from a series of experiments. Under these conditions; FeGAC 5 g/L, H2O2 concentration 100 mg/L, pH 3 and 60 min reaction time, the COD removal obtained was 96.19%. The ANN model was developed using a three-layer multilayer perceptron (MLP) neural network to predict pesticide degradation in terms of COD removal. The configuration of the model with the smallest mean square error (MSE) of 0.000046 contained 5 inputs, 9 hidden and, 1 output neuron. The Levenberg–Marquardt backpropagation training algorithm was used for training the network, while tangent sigmoid and linear transfer functions were used at the hidden and output neurons, respectively. The predicted results were in close agreement with the experimental results with correlation coefficient (R2) of 0.9994 i.e. 99.94% showing a close agreement to the actual experimental results. The sensitivity analysis showed that FeGAC dose had the highest influence with relative importance of 25.33%. The results show how robust the ANN model could be in the prediction of the behavior of the FeGAC/H2O2 process.


Cryogenics ◽  
2014 ◽  
Vol 63 ◽  
pp. 231-240 ◽  
Author(s):  
L. Savoldi Richard ◽  
R. Bonifetto ◽  
S. Carli ◽  
A. Froio ◽  
A. Foussat ◽  
...  

2003 ◽  
Vol 92 (3) ◽  
pp. 656-664 ◽  
Author(s):  
Tuncer Değim ◽  
Jonathan Hadgraft ◽  
Sibel İlbasmiş ◽  
Yalçin Özkan

Sign in / Sign up

Export Citation Format

Share Document