charpy impact
Recently Published Documents


TOTAL DOCUMENTS

1185
(FIVE YEARS 258)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Shreyas Biswas

Abstract: The objective of the present is to investigate hollow glass microspheres (HGMs) experimentally and carry out design analysis of hollow glass microsphere loaded PP/ABS composites. The tensile and notched Charpy impact test of HGM-filled acrylonitrile-butadiene-styrene copolymer (ABS) and Polypropylene (PP) composites will be studied with varying the concentrations of PP/ABS composite with HGM. Also further the design analysis will be studied by conducting the simulation under the same criteria and comparing the results at the end. This is done to introduce a light weight material without compromising specific strength of PP/ABS composite by adding HGM to the composite. Keywords: Hollow Glass Microsphere (HGM), ABS-Acrylonitrile butadiene styrene, PP- Polypropylene, Composites.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Madhuri Chandrashekhar Deshpande ◽  
Rajesh Chaudhari ◽  
Ramesh Narayanan ◽  
Harishwar Kale

Purpose This study aims to develop indium-based solders for cryogenic applications. Design/methodology/approach This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC. Findings It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications Originality/value DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.


2022 ◽  
pp. 002199832110652
Author(s):  
Osman Aydoğuş ◽  
Mehmet Turan Demirci

This study reveals the nano-hybridization effects of nano-graphene platelets (NGPs) and nano-silica (SiO2 nanoparticle), having different structural geometries on the mechanical properties, nano and micro-scale failure behaviors, and nanoscale fracture mechanisms of E-glass/epoxy composites. Tensile, three-point bending, and Charpy impact experiments were applied to determine the mechanical behaviors of 0.5 wt.% NGPs, 4 wt.% nano-silica and 0.5 wt.% NGPs + 4 wt.% nano-silica nanohybrid filled E-glass/epoxy and neat E-glass/epoxy composite samples. Failure of composite samples was examined by microscopy and SEM analysis. FTIR analyses were conducted to interpret the chemical and physical interactions between the nanoparticles and epoxy resin. Nano-hybridization exhibited the highest tensile strength and three-point flexural force for the composite samples. However, the NGPs filled nanocomposites also exhibited the best static tensile toughness and impact energy absorption. The experimental data showed that it was statistically significant as a result of the one-way ANOVA analysis. Remarkably, nano-hybridization of nano-silica and NGPs showed different fracture mechanisms at the nano and micro-scales.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012004
Author(s):  
W H Choong ◽  
H H Hamidi ◽  
K B Yeo

Abstract This study is focused on exploring intrinsic self-healing polymer material development, where the inclusion of thermoplastic additives into thermoset polymer material as healing agents. Intrinsic self-healing thermoset-thermoplastic development is involving the material formulation of thermoset liquid resin (Poly Bisphenol A-co-epichlorohydrin) and thermoplastic (polycaprolactone). The material formulation ratio is up to 30% polycaprolactone with respect to thermoset weight. The mixture is heated and stirred to saturate at 80°C before the hardener is added. The mixture is cured and further finishing as Charpy impact test specimen. The specimen is fractured and absorbed impact energy property characterised through the Charpy impact test. The heat treatment is then performed to trigger the self-healing reaction in the polymer. The self-healing efficiency of the thermoset thermoplastic is investigated based on the absorbed impact energy before and after the heat treatment. The 20% or higher thermoplastic concentration in the polymer caused the polymer to possess high self-healing efficiency and faster healing time as compared to the low thermoplastic concentration polymer. However, the high concentration polymer has a disadvantage on the overall structural strength instead. On the contrary, 10% to 15% thermoplastic composition will result in lower and slower self-healing performance but higher initial structural strength.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Chanachai Thongchom ◽  
Nima Refahati ◽  
Pouyan Roodgar Saffari ◽  
Peyman Roudgar Saffari ◽  
Meysam Nouri Niyaraki ◽  
...  

This study aims to explore the tensile and impact properties (tensile strength, modulus of elasticity, and impact strength) of polypropylene (PP)-based nanocomposites reinforced with graphene nanosheets, nanoclay, and basalt fibers. The response surface methodology (RSM) with Box–Behnken design (BBD) was adopted as the experimental design. An internal mixer was used to prepare compounds consisting of 0, 0.75 and 1.5 wt% graphene nanosheets, 0, 10 and 20 wt% basalt fibers, and 0, 3 and 6 wt% nanoclay. The samples were prepared by a hot press machine for mechanical testing. The tensile tests were run to determine the tensile strength, and modulus of elasticity, and the Charpy impact tests were performed to assess the impact strength. It was found that the addition of basalt increased the tensile strength, modulus of elasticity, and impact strength by 32%, 64% and 18%, respectively. Also, the incorporation of the low-weight graphene nanosheets increased the tensile and impact strength by 15% and 20%, respectively, Adding graphene nanosheets generally improved the modulus of elasticity by 66%. Similarly, the addition of nanoclay improved the tensile strength by 17% and increased the modulus of elasticity by 59%, but further addition of it decreased the impact strength by 19%. The values obtained by this experiment for the mechanical property were roughly close to the data yielded from desirability optimization.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Milad Hojati ◽  
Herbert Danninger ◽  
Christian Gierl-Mayer

In this paper, the effect of processes occurring during the sintering of four powder metallurgy steel grades on the resulting properties were investigated. This included three grades prepared from plain iron powder with admixed graphite, one grade alloyed also with elemental copper and another with Fe-Mn-Si masteralloy. One further grade was prepared from Cr-Mo pre-alloyed powder with admixed graphite. The effect of the sintering processes was examined in the temperature range of 700–1300 °C in an inert atmosphere (Ar). In order to study oxygen removal, DTA/TG runs linked with mass spectrometry (MS) as well as C/O elemental analysis were performed. Charpy impact tests and fractography studies were performed to study the effect of the temperature on the formation and growth of sintering contacts. Characterization also included metallography, dimensional change, sintered density, and hardness measurements to describe the dissolution of carbon and alloying elements during the process. Physical properties that were measured were electrical conductivity and coercive force. The results showed that, in all steels, the reduction of oxides that occur during the heating stage plays a key role in the formation and growth of the sintering contacts as well as in the completion of alloying processes. In the chromium alloy steel, the presence of the stable chromium oxides delays these processes up to higher temperatures, while in the other steels that are based on plain iron powder, these processes take place earlier in the heating stage, at lower temperatures. Compared to the standard Fe-C and Fe-Cu-C grades, the Cr-Mo steel requires more sophisticated sintering to ensure oxygen removal, but on the other hand it offers the best properties. The masteralloy variant, finally, can be regarded as a highly attractive compromise between manufacturing requirements, alloy element content, and product properties.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4448
Author(s):  
Janez Slapnik ◽  
Thomas Lucyshyn ◽  
Gerald Pinter

Engineering polymers reinforced with renewable fibres (RF) are an attractive class of materials, due to their excellent mechanical performance and low environmental impact. However, the successful preparation of such composites has proven to be challenging due to the low thermal stability of RF. The aim of the present study was to investigate how different RF behaves under increased processing temperatures and correlate the thermal properties of the fibres to the mechanical properties of composites. For this purpose, hemp, flax and Lyocell fibres were compounded into polypropylene (PP) using a co-rotating twin screw extruder and test specimens were injection moulded at temperatures ranging from 180 °C to 260 °C, with 20 K steps. The decomposition behaviour of fibres was characterised using non-isothermal and isothermal simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). The prepared composites were investigated using optical microscopy (OM), colorimetry, tensile test, Charpy impact test, dynamic mechanical analysis (DMA) and melt flow rate (MFR). Composites exhibited a decrease in mechanical performance at processing temperatures above 200 °C, with a steep decrease observed at 240 °C. Lyocell fibres exhibited the best reinforcement effect, especially at elevated processing temperatures, followed by flax and hemp fibres. It was found that the retention of the fibre reinforcement effect at elevated temperatures can be well predicted using isothermal TGA measurements.


Sign in / Sign up

Export Citation Format

Share Document