Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments

2018 ◽  
Vol 144 ◽  
pp. 332-340 ◽  
Author(s):  
Karla Martinez-Cruz ◽  
Armando Sepulveda-Jauregui ◽  
Peter Casper ◽  
Katey Walter Anthony ◽  
Kurt A. Smemo ◽  
...  
2019 ◽  
Author(s):  
Guangyi Su ◽  
Jakob Zopfi ◽  
Haoyi Yao ◽  
Lea Steinle ◽  
Helge Niemann ◽  
...  

AbstractAnaerobic oxidation of methane (AOM) by methanotrophic archaea is an important sink of this greenhouse gas in marine sediments. However, evidence for AOM in freshwater habitats is rare, and little is known about the pathways, electron acceptors and microbes involved. Here, we show that AOM occurs in anoxic sediments of a lake in southern Switzerland (Lake Cadagno). Combined AOM-rate and 16S rRNA gene-sequencing data suggest thatCandidatusMethanoperedens archaea are responsible for the observed methane oxidation. Members of the Methanoperedenaceae family were previously reported to conduct nitrate- or iron/manganese-dependent AOM. However, we demonstrate for the first time that the methanotrophic archaea do not necessarily rely upon these oxidants as terminal electron acceptors directly, but mainly perform canonical sulfate-dependent AOM, which under sulfate-starved conditions can be supported by metal (Mn, Fe) oxides through oxidation of reduced sulfur species to sulfate. The correspondence of high abundances of Desulfobulbaceae andCandidatusMethanoperedens at the same sediment depth confirm the interdependence of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria. The relatively high abundance and widespread distribution ofCandidatusMethanoperedens in lake sediments highlight their potentially important role in mitigating methane emissions from terrestrial freshwater environments to the atmosphere, analogous to ANME-1, -2 and -3 in marine settings.


2019 ◽  
Vol 65 (4) ◽  
pp. 863-875 ◽  
Author(s):  
Guangyi Su ◽  
Jakob Zopfi ◽  
Haoyi Yao ◽  
Lea Steinle ◽  
Helge Niemann ◽  
...  

2011 ◽  
Vol 77 (13) ◽  
pp. 4429-4436 ◽  
Author(s):  
Jörg S. Deutzmann ◽  
Bernhard Schink

ABSTRACTAnaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow14CO2formation from14CH4in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas14CO2formation without and with sulfate addition was negligible, addition of nitrate increased14CO2formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of thepmoAand 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions.


2016 ◽  
Author(s):  
Matthias Egger ◽  
Peter Kraal ◽  
Tom Jilbert ◽  
Fatimah Sulu-Gambari ◽  
Célia J. Sapart ◽  
...  

Abstract. The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1–100 pmol cm−3 d−1) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.


2017 ◽  
Vol 607-608 ◽  
pp. 23-31 ◽  
Author(s):  
Karla Martinez-Cruz ◽  
Mary-Cathrine Leewis ◽  
Ian Charold Herriott ◽  
Armando Sepulveda-Jauregui ◽  
Katey Walter Anthony ◽  
...  

2020 ◽  
Author(s):  
Hanni Vigderovich ◽  
Werner Eckert ◽  
Orit Sivan

<p>Methane is a potent greenhouse gas that is produced naturally via microbial processes in anoxic environments (i.e. marine and lake sediments). The release of methane to the atmosphere from sediments is controlled by its aerobic and anaerobic oxidation. Anaerobic oxidation of methane (AOM) consumes up to 90% of the produced methane in marine sediments and over half of the produced methane in freshwater sediments. The most common electron acceptor in marine sediments for AOM is sulfate, however, in freshwater lake sediments, where sulfate concentrations are low, other electron acceptors can take its place (i.e. iron/manganese/nitrate). In lake Kinneret (Israel), iron-coupled AOM was evident by in-situ sedimentary profiles and in fresh sediment slurry incubations. Here we present geochemical and molecular analyses results of slurry experiments of long-term incubated lake Kinneret sediments with labeled <sup>13</sup>C-methane, different potential electron acceptors and a few inhibitors. These experiments are part of an ongoing research to characterize the AOM processes in lake sediments, and indicate another possible type of AOM that has evolved in the long-term incubated lake sediments.</p>


2016 ◽  
Vol 13 (18) ◽  
pp. 5333-5355 ◽  
Author(s):  
Matthias Egger ◽  
Peter Kraal ◽  
Tom Jilbert ◽  
Fatimah Sulu-Gambari ◽  
Célia J. Sapart ◽  
...  

Abstract. The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe)-oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ.Here we combine detailed geochemical analyses of the sediment and porewater with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P), and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. In line with previous studies in the Black Sea, we show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g., vivianite) are converted to sulfide phases, leading to an enrichment in solid-phase S and the release of phosphate to the porewater. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward-diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front.Our model results further demonstrate that downward-migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM ( ∼  1–100 pmol cm−3 d−1) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction and reactivation of less reactive Fe oxides by methanogens, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the porewater at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate, and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.


2021 ◽  
Author(s):  
Antti J Rissanen ◽  
Tom Jilbert ◽  
Asko Simojoki ◽  
Rahul Mangayil ◽  
Sanni L Aalto ◽  
...  

ABSTRACTThe importance of nitrate in promoting anaerobic oxidation of methane (AOM) in the sediments of boreal lakes is currently unknown. Here we investigated the extent to which sediment AOM is linked to nitrate reduction in a nitrate-rich, oligo-mesotrophic, boreal lake (Lake Pääjärvi, Finland). AOM potential of sediment slurries, collected from three profundal stations of the study lake, was measured at varying nitrate concentrations using 13C-labelling. This was coupled with analysis of vertical profiles of the sediment and porewater geochemistry and the microbial communities (16S rRNA gene and shotgun metagenomic sequencing). Sediment AOM potential was enhanced by nitrate at a shallow station with high contents of labile phytoplankton-derived organic matter (Station 1), but not at the other two stations. AOM was also much higher at Station 1 (2.0-6.8 nmol C cm-3 d-1) than at the other stations (0-0.3 nmol C cm-3 d-1). Accordingly, methanotrophic archaea (Candidatus Methanoperedens sp.) and bacteria (Methylococcales) had the highest relative abundance at Station 1. Furthermore, geochemical profiles indicated that AOM was potentially coupled with reduction of nitrate, iron, or sulfate at all stations. We conclude that AOM linked to nitrate reduction takes place in boreal lake sediments. However, our data cannot resolve whether nitrate affects the process directly, via enhancing nitrate reduction-mediated AOM, or indirectly, via enhancing AOM mediated by reduction of other electron acceptors.One sentence summaryAnaerobic oxidation of methane linked to nitrate reduction in boreal lake sediments


Sign in / Sign up

Export Citation Format

Share Document