scholarly journals Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation

Author(s):  
George M. Bou-Assaf ◽  
Ivan L. Budyak ◽  
Michael Brenowitz ◽  
Eric S. Day ◽  
David Hayes ◽  
...  
2007 ◽  
Vol 361 (1) ◽  
pp. 24-30 ◽  
Author(s):  
John P. Gabrielson ◽  
Theodore W. Randolph ◽  
Brent S. Kendrick ◽  
Michael R. Stoner

2011 ◽  
Vol 436 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Masanori Noda ◽  
Susumu Uchiyama ◽  
Adam R. McKay ◽  
Akihiro Morimoto ◽  
Shigeki Misawa ◽  
...  

Proteins often exist as ensembles of interconverting states in solution which are often difficult to quantify. In the present manuscript we show that the combination of MS under nondenaturing conditions and AUC-SV (analytical ultracentrifugation sedimentation velocity) unambiguously clarifies a distribution of states and hydrodynamic shapes of assembled oligomers for the NAP-1 (nucleosome assembly protein 1). MS established the number of associated units, which was utilized as input for the numerical analysis of AUC-SV profiles. The AUC-SV analysis revealed that less than 1% of NAP-1 monomer exists at the micromolar concentration range and that the basic assembly unit consists of dimers of yeast or human NAP-1. These dimers interact non-covalently to form even-numbered higher-assembly states, such as tetramers, hexamers, octamers and decamers. MS and AUC-SV consistently showed that the formation of the higher oligomers was suppressed with increasing ionic strength, implicating electrostatic interactions in the formation of higher oligomers. The hydrodynamic shapes of the NAP-1 tetramer estimated from AUC-SV agreed with the previously proposed assembly models built using the known three-dimensional structure of yeast NAP-1. Those of the hexamer and octamer could be represented by new models shown in the present study. Additionally, MS was used to measure the stoichiometry of the interaction between the human NAP-1 dimer and the histone H2A–H2B dimer or H3–H4 tetramer. The present study illustrates a rigorous procedure for the analysis of protein assembly and protein–protein interactions in solution.


2016 ◽  
Vol 110 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Jia Ma ◽  
Huaying Zhao ◽  
Julia Sandmaier ◽  
J. Alexander Liddle ◽  
Peter Schuck

RSC Advances ◽  
2017 ◽  
Vol 7 (87) ◽  
pp. 55098-55105 ◽  
Author(s):  
Yating Gao ◽  
Tianlei Guang ◽  
Xiaodong Ye

Analytical ultracentrifugation sedimentation velocity (AUC-SV) was used to study the interactions between TMPyP4 and AGGG(TTAGGG)3 (Tel22) and the TMPyP4-induced dimer formation of G-quadruplex.


Sign in / Sign up

Export Citation Format

Share Document