nucleosome assembly
Recently Published Documents


TOTAL DOCUMENTS

448
(FIVE YEARS 81)

H-INDEX

59
(FIVE YEARS 6)

2022 ◽  
Vol 11 ◽  
Author(s):  
Ting Wen ◽  
Qiao Yi Chen

Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.


2021 ◽  
Vol 23 (1) ◽  
pp. 368
Author(s):  
Jana Fulnečková ◽  
Ladislav Dokládal ◽  
Karolína Kolářová ◽  
Martina Nešpor Dadejová ◽  
Klára Procházková ◽  
...  

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


2021 ◽  
Author(s):  
Ivan Corbeski ◽  
Xiaohu Guo ◽  
Bruna V. Eckhardt ◽  
Domenico Fasci ◽  
Melissa Graewert ◽  
...  

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B(1-5). Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step, and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ningning Guo ◽  
Di Zheng ◽  
Jiaxin Sun ◽  
Jian Lv ◽  
Shun Wang ◽  
...  

Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.


Author(s):  
Samaneh Ghassabi Kondalaji ◽  
Gregory D. Bowman

In transcriptionally active genes, nucleosome positions in promoters are regulated by nucleosome displacing factors (NDFs) and chromatin remodeling enzymes. Depletion of NDFs or the RSC chromatin remodeler shrinks or abolishes the nucleosome depleted regions (NDRs) in promoters, which can suppress gene activation and result in cryptic transcription. Despite their vital cellular functions, how the action of chromatin remodelers may be directly affected by site-specific binding factors like NDFs is poorly understood. Here we demonstrate that two NDFs, Reb1 and Cbf1, can direct both Chd1 and RSC chromatin remodeling enzymes in vitro , stimulating repositioning of the histone core away from their binding sites. Interestingly, although the Pho4 transcription factor had a much weaker effect on nucleosome positioning, both NDFs and Pho4 were able to similarly redirect positioning of hexasomes. In chaperone-mediated nucleosome assembly assays, Reb1 but not Pho4 showed an ability to block deposition of the histone H3/H4 tetramer, but Reb1 did not block addition of the H2A/H2B dimer to hexasomes. Our in vitro results show that NDFs bias the action of remodelers to increase the length of the free DNA in the vicinity of their binding sites. These results suggest that NDFs could directly affect NDR architecture through chromatin remodelers.


Author(s):  
Lu Gan ◽  
Haoze Shi ◽  
Ying Zhang ◽  
Jianfang Sun ◽  
Hao Chen

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma; in advanced stages, it can involve multiple organs and has a poor prognosis. Early detection of the disease is still urgent, but there is no optimal therapy for advanced MF. In the present study, quantitative proteomic analyses (label-free quantitation, LFQ) were applied to tissue samples of different stages of MF and tissue samples from controls (eczema patients and healthy donors) to conduct preliminary molecular analysis to clarify the pathogenesis of the disease. Differential protein expression analysis demonstrated that 113 and 305 proteins were associated with the early and advanced stages of MF, respectively. Gene ontology (GO) enrichment analysis was conducted to determine the potential functions of the proteins, which could be classified into three categories: biological process, cellular component, and molecular function. The results revealed that a series of biological processes, including “initiation of DNA replication” and “nucleosome assembly,” were involved in the disease. Moreover, cellular components, including the “desmosome” and “integrin complex,” may affect the invasion and metastasis of MF via molecular functions, including “integrin binding” and “cadherin binding”. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that “focal adhesion DNA replication,” “Toll-like receptor signalling pathway” and other pathways were also involved. A parallel reaction monitoring (PRM) assay was applied to validate the identified differentially expressed proteins. In conclusion, the above proteomic findings may have great diagnostic and prognostic value in diverse malignancies, especially MF. Nevertheless, further studies are still needed to explore the precise mechanisms of MF.


2021 ◽  
Author(s):  
Shuang Li ◽  
Yan Shi ◽  
Yanna Dang ◽  
Bingjie Hu ◽  
Lieying Xiao ◽  
...  

Linker histone H1 binds to the nucleosome and is implicated in the regulation of the chromatin structure and function. The H1 variant H1FOO is heavily expressed in oocytes and early embryos. However, given the poor homology of H1FOO among mammals, the functional role of H1FOO during early embryonic development remains largely unknown, especially in domestic animals. Here, we find that H1FOO is not only expressed in oocytes and early embryos but granulosa cells and spermatids in cattle. We then demonstrate that the interference of H1FOO results in early embryonic developmental arrest in cattle using either RNA editing or Trim-Away approach. H1FOO depletion leads to compromised expression of critical lineage-specific genes at the morula stage and affects the establishment of cell polarity. Interestingly, H1FOO depletion causes a significant increase in expression genes encoding other linker H1 and core histones. Concurrently, there is an increase of H3K9me3 and H3K27me3, two markers of repressive chromatin and a decrease of H4K16ac, a marker of open chromatin. Importantly, overexpression of bovine H1FOO results in severe embryonic developmental defects. In sum, we propose that H1FOO controls the proper chromatin structure that is crucial for the fidelity of cell polarization and lineage specification during bovine early development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tommy Stormberg ◽  
Sridhar Vemulapalli ◽  
Shaun Filliaux ◽  
Yuri L. Lyubchenko

AbstractChromatin structure is dictated by nucleosome assembly and internucleosomal interactions. The tight wrapping of nucleosomes inhibits gene expression, but modifications to histone tails modulate chromatin structure, allowing for proper genetic function. The histone H4 tail is thought to play a large role in regulating chromatin structure. Here we investigated the structure of nucleosomes assembled with a tail-truncated H4 histone using Atomic Force Microscopy. We assembled tail-truncated H4 nucleosomes on DNA templates allowing for the assembly of mononucleosomes or dinucleosomes. Mononucleosomes assembled on nonspecific DNA led to decreased DNA wrapping efficiency. This effect is less pronounced for nucleosomes assembled on positioning motifs. Dinucleosome studies resulted in the discovery of two effects- truncation of the H4 tail does not diminish the preferential positioning observed in full-length nucleosomes, and internucleosomal interaction eliminates the DNA unwrapping effect. These findings provide insight on the role of histone H4 in chromatin structure and stability.


2021 ◽  
Author(s):  
Chao-Pei Liu ◽  
Wenxing Jin ◽  
Jie Hu ◽  
Mingzhu Wang ◽  
Jingjing Chen ◽  
...  

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3–H4 chaperones found in distinct and common complexes, yet how sNASP binds H3–H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nα region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3–H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3–H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shu Liu ◽  
Yewei Zhang ◽  
Shien Cui ◽  
Dajiang Song ◽  
Bo Li ◽  
...  

Abstract Background Breast cancer is a common cancer among women in the world. However, its pathogenesis is still to be determined. The role and molecular mechanism of Nucleosome Assembly Protein 1 Like 1 (NAP1L1) in breast cancer have not been reported. Elucidation of molecular mechanism might provide a novel therapeutic target for breast cancer treatment. Methods A bioinformatics analysis was conducted to determine the differential expression of NAP1L1 in breast cancer and find the potential biomarker that interacts with NAP1L1 and hepatoma-derived growth factor (HDGF). The expression of NAP1L1 in tissues was detected by using immunohistochemistry. Breast cancer cells were transfected with the corresponding lentiviral particles and siRNA. The efficiency of transfection was measured by RT-qPCR and western blotting. Then, MTT, Edu, plate clone formation, and subcutaneous tumorigenesis in nude mice were used to detect the cell proliferation in breast cancer. Furthermore, coimmunoprecipitation (Co-IP) assay and confocal microscopy were performed to explore the detailed molecular mechanism of NAP1L1 in breast cancer. Results In this study, NAP1L1 protein was upregulated based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Consistent with the prediction, immunohistochemistry staining showed that NAP1L1 protein expression was significantly increased in breast cancer tissues. Its elevated expression was an unfavorable factor for breast cancer clinical progression and poor prognosis. Stably or transiently knocking down NAP1L1 reduced the cell growth in vivo and in vitro via repressing the cell cycle signal in breast cancer. Furthermore, the molecular basis of NAP1L1-induced cell cycle signal was further studied. NAP1L1 interacted with the HDGF, an oncogenic factor for tumors, and the latter subsequently recruited the key oncogenic transcription factor c-Jun, which finally induced the expression of cell cycle promoter Cyclin D1(CCND1) and thus the cell growth of breast cancer. Conclusions Our data demonstrated that NAP1L1 functions as a potential oncogene via interacting with HDGF to recruit c-Jun in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document