Regulation of mRNAs encoding the steroidogenic acute regulatory protein and cholesterol side-chain cleavage enzyme in the elasmobranch interrenal gland

2010 ◽  
Vol 168 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Andrew N. Evans ◽  
B. Scott Nunez
2001 ◽  
Vol 15 (8) ◽  
pp. 1264-1276 ◽  
Author(s):  
Xing-zi Lin ◽  
Hiroshi Takemori ◽  
Yoshiko Katoh ◽  
Junko Doi ◽  
Nanao Horike ◽  
...  

Abstract The involvement of salt-inducible kinase, a recently cloned protein serine/threonine kinase, in adrenal steroidogenesis was investigated. When Y1 mouse adrenocortical tumor cells were stimulated by ACTH, the cellular content of salt-inducible kinase mRNA, protein, and enzyme activity changed rapidly. Its level reached the highest point in 1–2 h and returned to the initial level after 8 h. The mRNA levels of cholesterol side-chain cleavage cytochrome P450 and steroidogenic acute regulatory protein, on the other hand, began to rise after a few hours, reaching the highest levels after 8 h. The salt-inducible kinase mRNA level in ACTH-, forskolin-, or 8-bromo-cAMP-treated Kin-7 cells, mutant Y1 with less cAMP-dependent PKA activity, remained low. However, Kin-7 cells, when transfected with a PKA expression vector, expressed salt-inducible kinase mRNA. Y1 cells that overexpressed salt-inducible kinase were isolated, and the mRNA levels of steroidogenic genes in these cells were compared with those in the parent Y1. The level of cholesterol side-chain cleavage cytochrome P450 mRNA in the salt-inducible kinase-overexpressing cells was markedly low compared with that in the parent, while the levels of Ad4BP/steroidogenic factor-1-, ACTH receptor-, and steroidogenic acute regulatory protein-mRNAs in the former were similar to those in the latter. The ACTH-dependent expression of cholesterol side-chain cleavage cytochrome P450- and steroidogenic acute regulatory protein-mRNAs in the salt-inducible kinase-overexpressing cells was significantly repressed. The promoter activity of the cholesterol side-chain cleavage cytochrome P450 gene was assayed by using Y1 cells transfected with a human cholesterol side-chain cleavage cytochrome P450 promoter-linked reporter gene. Addition of forskolin to the culture medium enhanced the cholesterol side-chain cleavage cytochrome P450 promoter activity, but the forskolin-dependently activated promoter activity was inhibited when the cells were transfected with a salt-inducible kinase expression vector. This inhibition did not occur when the cells were transfected with a salt-inducible kinase (K56M) vector that encoded an inactive kinase. The salt-inducible kinase’s inhibitory effect was also observed when nonsteroidogenic, nonAd4BP/steroidogenic factor-1 -expressing, NIH3T3 cells were used for the promoter assays. These results suggested that salt-inducible kinase might play an important role(s) in the cAMP-dependent, but Ad4BP/steroidogenic factor-1-independent, gene expression of cholesterol side-chain cleavage cytochrome P450 in adrenocortical cells.


2010 ◽  
Vol 24 (8) ◽  
pp. 1676-1677
Author(s):  
Feng-Tao Shi ◽  
Anthony P. Cheung ◽  
Christian Klausen ◽  
He-Feng Huang ◽  
Peter C. K. Leung

Abstract Background: We have reported that growth differentiation factor (GDF) 9 can enhance activin A (βAβA)-induced inhibin B (αβB) secretion in human granulosa-lutein (hGL) cells, but its effects on steroidogenic acute regulatory protein (StAR), ovarian steroidogenic enzymes, and progesterone production are unknown. We undertook this study to further evaluate GDF9 in this regard. Methods: hGL cells from women undergoing in vitro fertilization treatment were cultured with and without small interfering RNA (siRNA) transfection targeted at inhibin α-subunit or GDF9 before treatment with GDF9, activin A, FSH, or combinations. We compared StAR, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase expression in hGL cells and progesterone levels in culture media after these treatments. mRNA, protein, and hormone levels were assessed with real-time RT-PCR, immunoblotting, and ELISA, respectively. Data were analyzed by ANOVA followed by Tukey’s test. Results: Activin A alone reduced basal and FSH-induced progesterone production by decreasing the expression of StAR protein, which regulates the rate-limiting step in steroidogenesis but not P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase. GDF9 attenuated these activin A effects on StAR and progesterone. After transfection of a-subunit siRNA, activin A level increased (P < 0.001), whereas basal and activin A-induced inhibin B levels (with and without GDF9) decreased. Furthermore, the effects of GDF9 in reversing activin A suppression of progesterone production were attenuated (P < 0.001). Transfection of GDF9 siRNA decreased GDF9 as expected and led to lower StAR expression and progesterone secretion than those observed with activin A treatment alone. Conclusion: GDF9 attenuates the suppressive effects of activin A on StAR expression and progesterone production by increasing the expression of inhibin B, which acts as an activin A competitor.


Sign in / Sign up

Export Citation Format

Share Document