scholarly journals C-reactive protein activates the nuclear factor-κB pathway and induces vascular cell adhesion molecule-1 expression through CD32 in human umbilical vein endothelial cells and aortic endothelial cells

2006 ◽  
Vol 40 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Y LIANG ◽  
K SHYU ◽  
B WANG ◽  
L LAI
2013 ◽  
Vol 41 (03) ◽  
pp. 473-485 ◽  
Author(s):  
Gang Hu ◽  
Jiang Liu ◽  
Yong-Zhan Zhen ◽  
Jie Wei ◽  
Yue Qiao ◽  
...  

Reducing the expression of endothelial cell adhesion molecules (ECAMs) is known to decrease inflammation-induced vascular complications. In this study, we explored whether rhein can reduce the inflammation-induced expression of ECAMs in human umbilical vein endothelial cells (HUVECs) with or without lipopolysaccharide (LPS) stimulation. HUVECs were treated with different concentrations of rhein with or without 2.5 μg/ml LPS stimulation. Cell viability was assayed using the MTT method. Real-time PCR and Western blot analysis were used to measure the transcription and expression levels of ECAMs, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-SELECTIN and related signaling proteins. The results indicated that rhein (0–20 μmol/L) and LPS (0–10 μg/ml) had no effect on the viability of HUVECs. LPS could promote the expression of VCAM-1, ICAM-1 and E-SELECTIN. Rhein appeared to target VCAM-1, ICAM-1 and E-SELECTIN, with the transcription and expression of all three factors being reduced by the rhein treatment (10 and 20 μmol/L). The transcription and expression of VCAM-1 were also reduced by treatment with rhein (10 and 20 μmol/L) in the presence of LPS stimulation. In conclusion, rhein treatment reduced the expression of VCAM-1 in HUVECs via a p38-dependent pathway.


2009 ◽  
Vol 110 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Hee Kyoung Joo ◽  
Sae Cheol Oh ◽  
Eun Jung Cho ◽  
Kyoung Sook Park ◽  
Ji Young Lee ◽  
...  

Background Midazolam is widely used as an intravenous sedative. However, the role of midazolam on vascular endothelial activation is still unknown. The present study explores the action of midazolam on endothelial activation and its role to peripheral benzodiazepine receptor (PBR) in cultured human umbilical vein endothelial cells. Methods Intracellular localization of PBR in human umbilical vein endothelial cells was visualized with immunofluorescent staining. Monocyte adhesion and vascular cell adhesion molecule-1 expression were measured with monocyte adhesion assay and Western blot analysis. Involvement of PBR was assessed by using specific antagonists and small interfering RNA against PBR. Results PBR was localized in the mitochondria of human umbilical vein endothelial cells. Midazolam significantly inhibited tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 and monocyte adhesion in a dose-dependent manner (1-30 microM). The midazolam-mediated suppression on the tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression and monocyte adhesion were inhibited by the pretreatment of PK11195 and not inhibited by the flumazenil. Transfection of small interfering RNA for PBR decreased the expression of PBR (18 kDa) in human umbilical vein endothelial cells. Midazolam-mediated suppression on the tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression was abrogated by the transfection of small interfering RNA for PBR. Conclusion These results suggest that midazolam has an inhibitory action on the endothelial activation and that its action is related to the activation of peripheral benzodiazepine receptor localized in mitochondria of the endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document