cell adhesion molecule 1
Recently Published Documents


TOTAL DOCUMENTS

1731
(FIVE YEARS 217)

H-INDEX

105
(FIVE YEARS 7)

Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 95
Author(s):  
Katarzyna Van Damme-Ostapowicz ◽  
Mateusz Cybulski ◽  
Mariusz Kozakiewicz ◽  
Elżbieta Krajewska-Kułak ◽  
Piotr Siermontowski ◽  
...  

Background and Objectives: Vascular cell adhesion molecule-1 (VCAM-1) was identified as a cell adhesion molecule that helps to regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells. VCAM-1 is expressed by the vascular system and can be induced by reactive oxygen species, interleukin 1 beta (IL-1β) or tumor necrosis factor alpha (TNFα), which are produced by many cell types. The newest data suggest that VCAM-1 is associated with the progression of numerous immunological disorders, such as rheumatoid arthritis, asthma, transplant rejection and cancer. The aim of this study was to analyze the increase in VCAM-1 expression and the impact of exposure in a hyperbaric chamber to VCAM-1 levels in human blood serum. Materials and Methods: The study included 92 volunteers. Blood for the tests was taken in the morning, from the basilic vein of fasting individuals, in accordance with the applicable procedure for blood collection for morphological tests. In both groups of volunteers, blood was collected before and after exposure, in heparinized tubes to obtain plasma and hemolysate, and in clot tubes to obtain serum. The level of VCAM-1 was determined using the immunoenzymatic ELISA method. Results: The study showed that the difference between the distribution of VCAM-1 before and after exposure corresponding to diving at a depth of 30 m was at the limit of statistical significance in the divers group and that, in most people, VCAM-1 was higher after exposure. Diving to a greater depth had a much more pronounced impact on changes in VCAM-1 values, as the changes observed in the VCAM-1 level as a result of diving to a depth of 60 m were statistically highly significant (p = 0.0002). The study showed an increase in VCAM-1 in relation to the baseline value, which reached as much as 80%, i.e., VCAM-1 after diving was almost twice as high in some people. There were statistically significant differences between the results obtained after exposure to diving conditions at a depth of 60 m and the values measured for the non-divers group. The leukocyte level increased statistically after exposure to 60 m. In contrast, hemoglobin levels decreased in most divers after exposure to diving at a depth of 30 m (p = 0.0098). Conclusions: Exposure in the hyperbaric chamber had an effect on serum VCAM-1 in the divers group and non-divers group. There is a correlation between the tested morphological parameters and the VCAM-1 level before and after exposure in the divers group and the non-divers group. Exposure may result in activation of the endothelium.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mahnaz Rezaei Kelishadi ◽  
Amirmansour Alavi Naeini ◽  
Fariborz Khorvash ◽  
Gholamreza Askari ◽  
Zahra Heidari

AbstractThe current study was performed to evaluate the effects of alpha-lipoic acid (ALA) supplementation on lactate, nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) levels, and clinical symptoms in women with episodic migraines. Considering the inclusion and exclusion criteria, ninety-two women with episodic migraines participated in this randomized, double-blind, placebo-controlled, parallel-design trial. The participants were randomly assigned to receive either 300 mg/day ALA or placebo, twice per day for 12 weeks. The primary outcomes included headache severity, headache frequency per month, and duration of attacks and the secondary outcomes included lactate (a marker of mitochondrial function), NO, and VCAM-1 serum levels were measured at baseline and the end of the intervention. At the end of the study, there was a significant decrease in lactate serum levels (− 6.45 ± 0.82 mg/dl vs − 2.27 ± 1.17 mg/dl; P = 0.039) and VCAM-1 (− 2.02 ± 0.30 ng/ml vs − 1.21 ± 0.36 ng/ml; P = 0.025) in the ALA as compared to the placebo group. In addition, the severity (P < 0.001), frequency (P = 0.001), headache impact test (HIT-6) (P < 0.001), headache dairy results (HDR) (P = 0.003), and migraine headache index score (MHIS) (P < 0.001) had significantly decreased in the intervention as compared to the control group. No significant changes were observed for NO levels and duration of migraine pains. ALA supplementation can be considered a potential adjunct treatment in patients with migraine due to its improving mitochondrial and endothelial functions and clinical symptoms.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 72
Author(s):  
Jae-Ho Lee ◽  
Do-Young Kim ◽  
Rubee Pantha ◽  
Eun-Ho Lee ◽  
Jae-Hoon Bae ◽  
...  

Type 2 diabetes mellitus (T2DM) is a major global health issue. The development of T2DM is gradual and preceded by the pre-diabetes mellitus (pre-DM) stage, which often remains undiagnosed. This study aimed to identify novel pre-DM biomarkers in a high-fat diet (HFD)-induced pre-DM mouse model. Male C57BL/6J mice were fed either a chow diet or HFD for 12 weeks. Serum and liver samples were isolated in a time-dependent manner. Semi-quantitative assessment of secretory cytokines was performed by cytokine array analysis, and 13 cytokines were selected for further analysis based on the changes in expression levels in the pre-DM and T2DM stages. HFD-fed mice gained body weight and exhibited high serum lipid, liver enzyme, glucose, and insulin levels during the progression of pre-DM to T2DM. The mRNA expression of inflammatory and lipogenic genes was elevated in HFD-fed mice The mRNA expression of Fc receptor, IgG, low affinity Iib, lectin, galactose binding, soluble 1, vascular cell adhesion molecule 1, insulin-like growth factor binding protein 5, and growth arrest specific 6 was elevated in the pre-DM, which was confirmed by measuring protein levels. Our study identified novel pre-DM biomarkers that may help to delay or prevent the progression of T2DM.


Author(s):  
Danying Liao ◽  
Jesse Sundlov ◽  
Jieqing Zhu ◽  
Heng Mei ◽  
Yu Hu ◽  
...  

Objective: PECAM-1 (platelet endothelial cell adhesion molecule 1) is a 130 kDa member of the immunoglobulin (Ig) gene superfamily that is expressed on the surfaces of platelets and leukocytes and concentrated at the intercellular junctions of confluent endothelial cell monolayers. PECAM-1 Ig domains 1 and 2 (IgD1 and IgD2) engage in homophilic interactions that support a host of vascular functions, including support of leukocyte transendothelial migration and the maintenance of endothelial junctional integrity. The recently solved crystal structure of PECAM-1 IgD1 and IgD2 revealed a number of intermolecular interfaces predicted to play important roles in stabilizing PECAM-1/PECAM-1 homophilic interactions and in formation and maintenance of endothelial cell-cell contacts. We sought to determine whether the protein interfaces implicated in the crystal structure reflect physiologically important interactions. Approach and Results: We assessed the impact of single amino acid substitutions at the interfaces between opposing PECAM-1 molecules on homophilic binding and endothelial cell function. Substitution of key residues within the IgD1-IgD1 and IgD1-IgD2 interfaces but not those within the smaller IgD2-IgD2 interface, markedly disrupted PECAM-1 homophilic binding and its downstream effector functions, including the ability of PECAM-1 to localize at endothelial cell-cell borders, mediate the formation of endothelial tubes, and restore endothelial barrier integrity. Conclusions: Taken together, these results validate the recently described PECAM-1 IgD1/IgD2 crystal structure by demonstrating that specific residues visualized within the IgD1-IgD1 and IgD1-IgD2 interfaces of opposing molecules in the crystal are required for functionally important homophilic interactions. This information can now be exploited to modulate functions of PECAM-1 in vivo.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114842118
Author(s):  
Zhengjie Zhou ◽  
Chih-Fan Yeh ◽  
Michael Mellas ◽  
Myung-Jin Oh ◽  
Jiayu Zhu ◽  
...  

Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors. Improvements are needed. We previously devised a targeted polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium in vitro by displaying the peptide VHPKQHR targeting vascular cell adhesion molecule 1 (VCAM-1) on the periphery of the micelle. This paper explores whether this targeted nanomedicine strategy effectively treats vascular complications in vivo. Disturbed flow-induced microRNA-92a (miR-92a) has been linked to endothelial dysfunction. We have engineered a transgenic line (miR-92aEC-TG/Apoe−/−) establishing that selective miR-92a overexpression in adult vascular endothelium causally promotes atherosclerosis in Apoe−/− mice. We tested the therapeutic effectiveness of the VCAM-1–targeting polyelectrolyte complex micelles to deliver miR-92a inhibitors and treat pathological vascular remodeling in vivo. VCAM-1–targeting micelles preferentially delivered miRNA inhibitors to inflamed endothelial cells in vitro and in vivo. The therapeutic effectiveness of anti–miR-92a therapy in treating atherosclerosis and stenosis in Apoe−/− mice is markedly enhanced by the VCAM-1–targeting polyelectrolyte complex micelles. These results demonstrate a proof of concept to devise polyelectrolyte complex micelle-based targeted nanomedicine approaches treating vascular complications in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Wei Li ◽  
Jiang Wu ◽  
Mingjin Guo ◽  
Jing Shang

Chronic inflammation can stimulate the formation and progression of atherosclerotic plaques and increase the vulnerability of plaques. However, there are few studies on the changes of carotid inflammatory plaques during treatment. Our study attempted to investigate the use of superparamagnetic iron oxide nanoparticle (SPION) ultrasound imaging to detect the expression of vascular cell adhesion molecule-1 (VCAM-1) in patients with carotid plaques and analyze the effects of SPION ultrasound imaging in inflammatory plaque visualization effect. SPION microbubble contrast agents have good imaging effects both in vivo and in vitro. We conjugated the VCAM-1 protein to the microbubbles wrapped in SPIONs to form SPIONs carrying VCAM-1 antibodies. Observe the signal intensity of SPIONs carrying VCAM-1 antibody to arteritis plaque. The results showed that the SPION contrast agent carrying VCAM-1 antibody had higher peak gray-scale video intensity than the other two groups of contrast agents not carrying VCAM-1 antibody. It shows that SPIONs have excellent imaging effects in ultrasound imaging, can evaluate the inflammatory response of arterial plaque lesions, and are of great significance for the study of carotid inflammatory plaque changes.


2021 ◽  
Vol 61 (6) ◽  
pp. 328-35
Author(s):  
Nolitriani Nolitriani ◽  
Rinang Mariko ◽  
Mayetti Mayetti

Background The clinical manifestations of dengue infection vary widely, ranging from asymptomatic to severe forms that can cause death. In severe infections, the expression of soluble vascular cell adhesion molecule-1 (sVCAM-1) in endothelial cells is reportedly excessive, causing endothelial cell gaps through VE-cadherin and plasma leakage, which is the basic mechanism for shock in dengue hemorrhagic fever (DHF). Objective To determine the association between sVCAM-1 levels and severity of dengue hemorrhagic fever in children. Methods This cross-sectional study was done in children with DHF at Dr. M. Djamil Hospital, Padang, West Sumatera. Subjects were diagnosed according to the 2011 WHO criteria and selected by consecutive sampling. They were grouped as DHF with or without shock. Examination of sVCAM-1 levels was done by ELISA method. Mann-Whitney test with a significance of P<0.05 was used for statistical analysis. Results A total of 66 patients were collected from January 2018 to December 2019, but 2 patients were excluded. The 64 subjects who met the inclusion criteria consisted of 32 (50%) DHF without shock and 32 (50%) DHF with shock. Median sVCAM-1 was significantly higher in the DHF with shock group (840 ng/mL) than in DHF without shock group (598 ng/mL) (P<0.05). Conclusion There was a significant association between higher sVCAM-1 levels and greater severity of dengue hemorrhagic fever in children.


Sign in / Sign up

Export Citation Format

Share Document